大学数学
大學數學
대학수학
COLLEGE MATHEMATICS
2011年
5期
118-120
,共3页
主理想整环%不变因子%素元%不可约元
主理想整環%不變因子%素元%不可約元
주이상정배%불변인자%소원%불가약원
principal ideal domain invarint factors%prime element%irreducible element
文献[1]热运用环论的方法证明了环Z[m~(1/2)]热的商环Z[m~(1/2)]/(a+bm~(1/2))的元素个数是|a2-b2m|.我们将用主理想整环上的模的理论给出一种简洁的证明.
文獻[1]熱運用環論的方法證明瞭環Z[m~(1/2)]熱的商環Z[m~(1/2)]/(a+bm~(1/2))的元素箇數是|a2-b2m|.我們將用主理想整環上的模的理論給齣一種簡潔的證明.
문헌[1]열운용배론적방법증명료배Z[m~(1/2)]열적상배Z[m~(1/2)]/(a+bm~(1/2))적원소개수시|a2-b2m|.아문장용주이상정배상적모적이론급출일충간길적증명.
In [1], the author proved that the element number of the quoient ring Z [m]/(a + b m) of integral domain Z [m] is |a^2 --b^2m| by the method of ring theory. We will give a concise proof on this result by the theory of modules over principal ideal domain.