渭南师范学院学报:综合版
渭南師範學院學報:綜閤版
위남사범학원학보:종합판
Journal of Weinan Teachers College
2011年
10期
58-61
,共4页
LF闭包空间%α-包域族%余加细%强α-局部有限
LF閉包空間%α-包域族%餘加細%彊α-跼部有限
LF폐포공간%α-포역족%여가세%강α-국부유한
LF closure spaces%closure family%refinement%strong locally finite
仿紧性是模糊拓扑学中的重要概念.在LF闭包空间中层仿紧性的基础上,介绍了可数层仿紧性,并刻画了其基本特征.研究了LF闭包空间中可数层仿紧性的性质:对Cech闭包算子的像集可遗传,与可数仿紧集的乘积是可数层仿紧集,是“L-好的推广”,具有LF弱同胚不变性.
倣緊性是模糊拓撲學中的重要概唸.在LF閉包空間中層倣緊性的基礎上,介紹瞭可數層倣緊性,併刻畫瞭其基本特徵.研究瞭LF閉包空間中可數層倣緊性的性質:對Cech閉包算子的像集可遺傳,與可數倣緊集的乘積是可數層倣緊集,是“L-好的推廣”,具有LF弱同胚不變性.
방긴성시모호탁복학중적중요개념.재LF폐포공간중층방긴성적기출상,개소료가수층방긴성,병각화료기기본특정.연구료LF폐포공간중가수층방긴성적성질:대Cech폐포산자적상집가유전,여가수방긴집적승적시가수층방긴집,시“L-호적추엄”,구유LF약동배불변성.
The paracompact is the important property of the F-topology spaces. In this paper, the concept of countable sheaf paraeompact is introduced based on the sheaf paracompact in LF closure spaces. Its characteristics are studied. The properties of countable sheaf paracompact in LF closure spaces are investigated: hereditary with respect to sets as closure operator, the product with paracompaet is countable sheaf paracompact, and it is proved that the countable sheaf paracompact is "L-good extension", with weakly invariant with embryo.