太阳能学报
太暘能學報
태양능학보
ACTA ENERGIAE SOLARIS SINICA
2001年
1期
77-83
,共7页
郭兵%唐松涛%吕子安%李定凯%沈幼庭
郭兵%唐鬆濤%呂子安%李定凱%瀋幼庭
곽병%당송도%려자안%리정개%침유정
生物质%气化%神经网络%过程模拟%流化床
生物質%氣化%神經網絡%過程模擬%流化床
생물질%기화%신경망락%과정모의%류화상
用几种生物质原料进行了水蒸汽流化条件下的常压气化实验。为得到各种生物质的气化特性,用混合神经网络模型对气化过程进行了模拟。模型得到的气化产率与实验数据吻合得较好。神经网络给出的气化特性能正确地反映实际的生物质气化过程。模拟结果还显示,草本生物质和木本生物质在气化过程中,各种煤气成分的释放有不同的规律。
用幾種生物質原料進行瞭水蒸汽流化條件下的常壓氣化實驗。為得到各種生物質的氣化特性,用混閤神經網絡模型對氣化過程進行瞭模擬。模型得到的氣化產率與實驗數據吻閤得較好。神經網絡給齣的氣化特性能正確地反映實際的生物質氣化過程。模擬結果還顯示,草本生物質和木本生物質在氣化過程中,各種煤氣成分的釋放有不同的規律。
용궤충생물질원료진행료수증기류화조건하적상압기화실험。위득도각충생물질적기화특성,용혼합신경망락모형대기화과정진행료모의。모형득도적기화산솔여실험수거문합득교호。신경망락급출적기화특성능정학지반영실제적생물질기화과정。모의결과환현시,초본생물질화목본생물질재기화과정중,각충매기성분적석방유불동적규률。
Gasification experiments of several types of biomass wereconducted in an atmospheric steam fluidized bed gasifier,w hich biomass samples were fed into continuously and without residue discharge.In order to obtain the gasification profiles for each type of biomass,an artificia l neural network model has been developed to simulate the gasification process.M odel-predicted gas production rates for the biomass gasification processes are in good agreement with the experimental data,thereby the gasification profiles g iven by the neural network model are considered to properly reflect the real gas ification process of a biomass.Gasification profiles identified by neural networ k model suggest that gasification behavior of arboreal types of biomass is signi ficantly different from that of herbaceous ones.