软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2002年
1期
1-7
,共7页
聚类:网格%增量算法
聚類:網格%增量算法
취류:망격%증량산법
clustering%grid%incremental algorithm
提出基于密度的网格聚类算法GDcA,发现大规模空间数据库中任意形状的聚类.该算法首先将数据空间划分成若干体积相同的单元,然后对单元进行聚类只有密度不小于给定阈值的单元才得到扩展,从而大大降低了时间复杂性在GDcA的基础上,给出增量式聚类算法IGDcA,适用于数据的批量更新.
提齣基于密度的網格聚類算法GDcA,髮現大規模空間數據庫中任意形狀的聚類.該算法首先將數據空間劃分成若榦體積相同的單元,然後對單元進行聚類隻有密度不小于給定閾值的單元纔得到擴展,從而大大降低瞭時間複雜性在GDcA的基礎上,給齣增量式聚類算法IGDcA,適用于數據的批量更新.
제출기우밀도적망격취류산법GDcA,발현대규모공간수거고중임의형상적취류.해산법수선장수거공간화분성약간체적상동적단원,연후대단원진행취류지유밀도불소우급정역치적단원재득도확전,종이대대강저료시간복잡성재GDcA적기출상,급출증량식취류산법IGDcA,괄용우수거적비량경신.
Although many clustering algorithms have been proposed so far, seldom was focused on high-dimensional and incremental databases. This paper introduces a grid density-based clustering algorithm GDCA. which discovers clusters with arbitrary shape in spatial databases. It first partitions the data space into a number of units, and then deals with units instead of points. Only those units with the density no less than a given minimum density threshold are useful in extending clusters. An incremental clustering algorithm----IGDCA is also presented, applicable in periodically incremental environment.