声学学报
聲學學報
성학학보
ACTA ACUSTICA
2010年
2期
107-112
,共6页
白国锋%尹铫%周城光%刘碧龙%刘克
白國鋒%尹銚%週城光%劉碧龍%劉剋
백국봉%윤요%주성광%류벽룡%류극
针对黏弹性材料吸声效率问题,利用分层介质声传播理论和数值算法优化了不同物理条件下材料的复弹性模量.采用参数等效的方法分析了含气泡黏弹性材料的声学特性,并给出了此种材料优化后的弹性模量曲线.根据物理模型计算了一定边界条件下材料复弹性模量等吸声系数曲线,得到了几种背衬条件下黏弹性材料吸声系数大于0.8的弹性模量和损耗因子范围.研究表明调节黏弹性材料的复弹性模量可以有效提高材料的吸声性能,吸声系数大于0.8时其弹性模量和损耗因子范围在不同背衬条件下差异较大,发现一定厚度的钢背衬会降低调控复弹性模量的难度,对含气泡黏弹性材料的计算也可得到类似结果.
針對黏彈性材料吸聲效率問題,利用分層介質聲傳播理論和數值算法優化瞭不同物理條件下材料的複彈性模量.採用參數等效的方法分析瞭含氣泡黏彈性材料的聲學特性,併給齣瞭此種材料優化後的彈性模量麯線.根據物理模型計算瞭一定邊界條件下材料複彈性模量等吸聲繫數麯線,得到瞭幾種揹襯條件下黏彈性材料吸聲繫數大于0.8的彈性模量和損耗因子範圍.研究錶明調節黏彈性材料的複彈性模量可以有效提高材料的吸聲性能,吸聲繫數大于0.8時其彈性模量和損耗因子範圍在不同揹襯條件下差異較大,髮現一定厚度的鋼揹襯會降低調控複彈性模量的難度,對含氣泡黏彈性材料的計算也可得到類似結果.
침대점탄성재료흡성효솔문제,이용분층개질성전파이론화수치산법우화료불동물리조건하재료적복탄성모량.채용삼수등효적방법분석료함기포점탄성재료적성학특성,병급출료차충재료우화후적탄성모량곡선.근거물리모형계산료일정변계조건하재료복탄성모량등흡성계수곡선,득도료궤충배츤조건하점탄성재료흡성계수대우0.8적탄성모량화손모인자범위.연구표명조절점탄성재료적복탄성모량가이유효제고재료적흡성성능,흡성계수대우0.8시기탄성모량화손모인자범위재불동배츤조건하차이교대,발현일정후도적강배츤회강저조공복탄성모량적난도,대함기포점탄성재료적계산야가득도유사결과.
Based on wave propagating theory of multilayered medium and the optimizing algorithm, the complex elastic modulus of viscouselastic materials are optimized with different physical conditions in order to improve material absorption performance. The absorption performance of bubbled viscoelastic materials is computed and the curves of the optimized elastic modulus are plotted as well. Isoclines of absorption coefficient on complex elastic modulus of absorption materials are presented with certain boundary conditions . Assuming the absorption coefficient is larger than 0.8, the scope of elastic modulus and loss factor of the viscoelastic materials with different boundary conditions are given and discussed. The results show that the sound absorption performance can be improved effectively by adjusting complex elastic modulus of viscoelastic materials. The scope of complex elastic modulus is found to be very sensitive to the boundary conditions while the absorption coefficient is larger than 0.8. The difficulty of adjusting complex elastic modulus can be reduced with certain steel backing. These conclusions are applicable to the case of bubbled viscoelastic materials.