物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2010年
2期
507-510
,共4页
郭永福%薛成山%石锋%庄惠照%刘文军%孙海波%曹玉萍
郭永福%薛成山%石鋒%莊惠照%劉文軍%孫海波%曹玉萍
곽영복%설성산%석봉%장혜조%류문군%손해파%조옥평
纳米线%GaN%溅射%光学特性%钯催化%单晶
納米線%GaN%濺射%光學特性%鈀催化%單晶
납미선%GaN%천사%광학특성%파최화%단정
Nanowires%GaN%Sputtering%Optical property%Pdcatalysis%Single crystal
基于金属元素钯具有的催化特性,采用射频磁控溅射方法,在Si(111)衬底上沉积Pd:Ga_2O_3薄膜,然后在950℃下对薄膜进行氨化,制备出大量GaN纳米线.采用扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等技术手段对样品的结构、形貌和成分进行分析.结果表明,制备的样品为具有六方纤锌矿结构的单晶GaN纳米线,直径在20-60 nm范围内,长度为几十微米,表面光滑无杂质,结晶质量较高.用光致发光光谱对样品的发光特性进行测试,分别在361.1、388.6和426.3 nm处出现三个发光峰,且与GaN体材料相比近带边紫外发光峰发生了较弱的蓝移.对GaN纳米线的生长机制也进行了简单的讨论.
基于金屬元素鈀具有的催化特性,採用射頻磁控濺射方法,在Si(111)襯底上沉積Pd:Ga_2O_3薄膜,然後在950℃下對薄膜進行氨化,製備齣大量GaN納米線.採用掃描電子顯微鏡(SEM)、X射線衍射(XRD)、透射電子顯微鏡(TEM)和高分辨透射電子顯微鏡(HRTEM)等技術手段對樣品的結構、形貌和成分進行分析.結果錶明,製備的樣品為具有六方纖鋅礦結構的單晶GaN納米線,直徑在20-60 nm範圍內,長度為幾十微米,錶麵光滑無雜質,結晶質量較高.用光緻髮光光譜對樣品的髮光特性進行測試,分彆在361.1、388.6和426.3 nm處齣現三箇髮光峰,且與GaN體材料相比近帶邊紫外髮光峰髮生瞭較弱的藍移.對GaN納米線的生長機製也進行瞭簡單的討論.
기우금속원소파구유적최화특성,채용사빈자공천사방법,재Si(111)츤저상침적Pd:Ga_2O_3박막,연후재950℃하대박막진행안화,제비출대량GaN납미선.채용소묘전자현미경(SEM)、X사선연사(XRD)、투사전자현미경(TEM)화고분변투사전자현미경(HRTEM)등기술수단대양품적결구、형모화성분진행분석.결과표명,제비적양품위구유륙방섬자광결구적단정GaN납미선,직경재20-60 nm범위내,장도위궤십미미,표면광활무잡질,결정질량교고.용광치발광광보대양품적발광특성진행측시,분별재361.1、388.6화426.3 nm처출현삼개발광봉,차여GaN체재료상비근대변자외발광봉발생료교약적람이.대GaN납미선적생장궤제야진행료간단적토론.
Based on the catalytic property of palladium, GaN nanowires were fabricated by ammoniating Pd:Ga_2O_3 thin films at 950 ℃, which were deposited onto a Si(111) substrate by radio frequency (RF) magnetron sputtering. Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the structure, morphology, and composition of the samples. Results reveal that the nanowires are single-crystal GaN with a hexagonal wurtzite structure and they have diameters ranging from 20 to 60 nm with lengths of up to several tens of micrometers. Moreover, most of the GaN nanowires have a smooth surface without any impurities and are of high crystal quality. The optical properties of the samples were measured by photoluminescence spectroscopy and three emission bands with peaks at 361.1,388.6, and 426.3 nm were observed. Additionally, the bandgap UV light emission has a weak blue shift compared to the bulk GaN. We briefly discuss the growth mechanism of the GaN nanowires.