控制理论与应用
控製理論與應用
공제이론여응용
CONTROL THEORY & APPLICATIONS
2010年
1期
25-31
,共7页
林海军%滕召胜%迟海%吴阳平%易钊
林海軍%滕召勝%遲海%吳暘平%易釗
림해군%등소성%지해%오양평%역쇠
汽车衡%称重传感器%故障诊断%信息融合%径向基神经网络
汽車衡%稱重傳感器%故障診斷%信息融閤%徑嚮基神經網絡
기차형%칭중전감기%고장진단%신식융합%경향기신경망락
truck scale%load sensor%fault-diagnosis%information fusion%radial-basis-function-neural-network
传统汽车衡不具备故障诊断功能,任一称重传感器发生故障都将导致称重系统失效.为此提出了一种基于信息融合的汽车衡称重传感器故障诊断方法,利用径向基函数神经网络(RBFNN)逼近汽车衡多路称重传感器之间的函数关系,预测各传感器的输出,并给出RBFNN的训练算法;以各传感器的预测信号与实测信号为输入,建立了融合检测模型,采用表决融合检测准则,完成故障传感器寻址、故障类型识别、故障程度判决和故障传感器正常输出估计等故障诊断.大量实验与现场检定证明,采用这种方法的汽车衡准确实现了称重传感器故障诊断,任一称重传感器失效后的汽车衡性能优于正常状态下4级秤的指标,其最大称蕈误差≤0.7%,提高了系统可靠性.
傳統汽車衡不具備故障診斷功能,任一稱重傳感器髮生故障都將導緻稱重繫統失效.為此提齣瞭一種基于信息融閤的汽車衡稱重傳感器故障診斷方法,利用徑嚮基函數神經網絡(RBFNN)逼近汽車衡多路稱重傳感器之間的函數關繫,預測各傳感器的輸齣,併給齣RBFNN的訓練算法;以各傳感器的預測信號與實測信號為輸入,建立瞭融閤檢測模型,採用錶決融閤檢測準則,完成故障傳感器尋阯、故障類型識彆、故障程度判決和故障傳感器正常輸齣估計等故障診斷.大量實驗與現場檢定證明,採用這種方法的汽車衡準確實現瞭稱重傳感器故障診斷,任一稱重傳感器失效後的汽車衡性能優于正常狀態下4級秤的指標,其最大稱蕈誤差≤0.7%,提高瞭繫統可靠性.
전통기차형불구비고장진단공능,임일칭중전감기발생고장도장도치칭중계통실효.위차제출료일충기우신식융합적기차형칭중전감기고장진단방법,이용경향기함수신경망락(RBFNN)핍근기차형다로칭중전감기지간적함수관계,예측각전감기적수출,병급출RBFNN적훈련산법;이각전감기적예측신호여실측신호위수입,건립료융합검측모형,채용표결융합검측준칙,완성고장전감기심지、고장류형식별、고장정도판결화고장전감기정상수출고계등고장진단.대량실험여현장검정증명,채용저충방법적기차형준학실현료칭중전감기고장진단,임일칭중전감기실효후적기차형성능우우정상상태하4급칭적지표,기최대칭심오차≤0.7%,제고료계통가고성.
Conventional truck scale without fault diagnosis will be disabled when anyone load cell is going wrong in operation. A fault-diagnosis method for load cells is proposed based on information-fusion. technique. The radial-basis-function-neural-network(RBFNN) with a training algorithm is employed to approximately model the internal relations among load cells for predicting their outputs. The prediction outputs together with the real outputs of the load cells are sent to a fusion-detection model developed by us. This model employs the criterion of voting-fusion-diagnosis to generate the fusion-diagnosis results, which include locations of faulty load cells, the types and the degrees of faults, the estimated outputs of faulty load cells in normal operating condition. Field tests show that the truck scale installed with the proposed diagnostic facilities discriminates load cells precisely. In the case of one faulty cell, its maximum weighing error is less than 0.7%, exhibiting a performance better than that of a 4th class scale under normal operating condition.