兰州大学学报(自然科学版)
蘭州大學學報(自然科學版)
란주대학학보(자연과학판)
JOURNAL OF LANZHOU UNIVERSITY(NATURAL SCIENCES)
2010年
6期
105-111
,共7页
Chaffee-Infante方程%吸引子分歧%中心流形
Chaffee-Infante方程%吸引子分歧%中心流形
Chaffee-Infante방정%흡인자분기%중심류형
Chaffee-Infante equation%attractor bifurcation%center manifold
对Chaffee-Infante方程给出了分歧分析.在两种情形下证明了当参数λ穿过第一临界值λ0=1时,该问题分歧出一个吸引子.该分析是以最近创立的新的吸引子分歧理论为基础,同时运用了中心流形约化方法.
對Chaffee-Infante方程給齣瞭分歧分析.在兩種情形下證明瞭噹參數λ穿過第一臨界值λ0=1時,該問題分歧齣一箇吸引子.該分析是以最近創立的新的吸引子分歧理論為基礎,同時運用瞭中心流形約化方法.
대Chaffee-Infante방정급출료분기분석.재량충정형하증명료당삼수λ천과제일림계치λ0=1시,해문제분기출일개흡인자.해분석시이최근창립적신적흡인자분기이론위기출,동시운용료중심류형약화방법.
A bifurcation analysis on the Chaffee-Infante equation was presented and it was proved that the problem bifurcated an attractor as λ crossed the first critical value λ0=1 for two cases . The analysis was based on a newly developed attractor bifurcation theory ,together with the center manifold reduction.