黑龙江大学自然科学学报
黑龍江大學自然科學學報
흑룡강대학자연과학학보
JOURNAL OF NATURAL SCIENCE OF HEILONGJIANG UNIVERSITY
2011年
6期
797-800
,共4页
延迟微分方程%稳定性%数值解%无限延迟%二阶导数方法
延遲微分方程%穩定性%數值解%無限延遲%二階導數方法
연지미분방정%은정성%수치해%무한연지%이계도수방법
delay differential equations%stability%numerical solution%infinite lag%second derivative method
讨论了比例延时微分方程的二阶导数方法.为了解决研究长时间解性态时遇到的存储问题,变步长格式被采纳,给出了解比例延时微分方程的二阶导数方法稳定性的充分条件.
討論瞭比例延時微分方程的二階導數方法.為瞭解決研究長時間解性態時遇到的存儲問題,變步長格式被採納,給齣瞭解比例延時微分方程的二階導數方法穩定性的充分條件.
토론료비례연시미분방정적이계도수방법.위료해결연구장시간해성태시우도적존저문제,변보장격식피채납,급출료해비례연시미분방정적이계도수방법은정성적충분조건.
The so-called second derivative method for pantograph equation is discussed.In order to solve the storage problem involved in studying the long time behavior of the solution,a grid with variable stepsize is adopted.A sufficient condition for the stability of the second derivative method for the pantograph equation is shown.