发光学报
髮光學報
발광학보
CHINESE JOURNAL OF LUMINESCENCE
2004年
1期
14-18
,共5页
电光效应%非线性%量子阱
電光效應%非線性%量子阱
전광효응%비선성%양자정
electro-optic effects%nonlinear%quantum well
运用密度矩阵方法推导出了特殊非对称量子阱中电光系数的解析表达式,并以典型的GaAs/AlGaAs非对称量子阱为例进行了数字计算.计算结果表明,量子阱的非对称性随着参数a的增大而增强,随着参数V0的增大而减小.电光系数的最大值也随着参数a的增大而增大,随着参数V0的增大而减小,表明电光系数将随着量子阱非对称性的增大而增大.在取不同的参数a和不同的参数V0时,电光系数和入射光子能量的关系分别被绘制成曲线图.在图中分别有三个不同的峰,而且系统的非对称性越大,峰值就越大.随着量子阱非对称性的增大,曲线中的峰向能量低的方向移动.另外,在这种量子阱中得到了比较大的电光系数,大约在10-6m/V量级.随着近来纳米制作技术的进步,使得在实验上制作这种特殊非对称量子阱并得到较好的非线性材料成为可能.
運用密度矩陣方法推導齣瞭特殊非對稱量子阱中電光繫數的解析錶達式,併以典型的GaAs/AlGaAs非對稱量子阱為例進行瞭數字計算.計算結果錶明,量子阱的非對稱性隨著參數a的增大而增彊,隨著參數V0的增大而減小.電光繫數的最大值也隨著參數a的增大而增大,隨著參數V0的增大而減小,錶明電光繫數將隨著量子阱非對稱性的增大而增大.在取不同的參數a和不同的參數V0時,電光繫數和入射光子能量的關繫分彆被繪製成麯線圖.在圖中分彆有三箇不同的峰,而且繫統的非對稱性越大,峰值就越大.隨著量子阱非對稱性的增大,麯線中的峰嚮能量低的方嚮移動.另外,在這種量子阱中得到瞭比較大的電光繫數,大約在10-6m/V量級.隨著近來納米製作技術的進步,使得在實驗上製作這種特殊非對稱量子阱併得到較好的非線性材料成為可能.
운용밀도구진방법추도출료특수비대칭양자정중전광계수적해석표체식,병이전형적GaAs/AlGaAs비대칭양자정위례진행료수자계산.계산결과표명,양자정적비대칭성수착삼수a적증대이증강,수착삼수V0적증대이감소.전광계수적최대치야수착삼수a적증대이증대,수착삼수V0적증대이감소,표명전광계수장수착양자정비대칭성적증대이증대.재취불동적삼수a화불동적삼수V0시,전광계수화입사광자능량적관계분별피회제성곡선도.재도중분별유삼개불동적봉,이차계통적비대칭성월대,봉치취월대.수착양자정비대칭성적증대,곡선중적봉향능량저적방향이동.령외,재저충양자정중득도료비교대적전광계수,대약재10-6m/V량급.수착근래납미제작기술적진보,사득재실험상제작저충특수비대칭양자정병득도교호적비선성재료성위가능.
Recently, there has been an increasing interest in nonlinear optical properties of semiconductor quantum well structures, because of their relevance for studying practical applications and as a probe for the electronic structure of mesoscopic media. In this paper, the nonlinear electro-optic effects in special asymmetric quantum wells are studied. Because of this kind of quantum well is more approximate a practical quantum well between the conduction band and valence band, and it can be realized very easily in experiment. The analytical expressions of electro-optic coefficient have been derived by compact density-matrix approach and the numerical results were presented for GaAs/AlGaAs asymmetric quantum wells. The shape of the quantum well varying with the parameter a and the parameter V0 were plotted. Itis found that the asyrmnetry of the quantum wells enhances with the increase of parameter a. On the contrary, the asymmetry of the quantum walls decreases with the increase of the parameter Vo. The maximum values of the electro-optic coefficient varying with the parameter a and the parameter V0 were plotted. The numerical results show the electro-optic coefficient enhances with the increases of the parameter a and the decrease of the parameter V0. Therefore, it is found that the electro-optic coefficient increases with the enhancement of the quantum wells' asymmetry. The electro-optic coefficient as afunction of the photon energy with different values of parameter a and different values of parameter V0 were also plotted. It can be observed that there are three peak values in the figures, respectively. And it is obvious that the larger the asymmetry of quantum wells is, the bigger the peak value is. It can be seen that with the increase of the asymmetry of quantum well, the peaks move to the low energy side.Moreover, the electro-optic coefficient obtained in this special quantum well is as large as 104 m/V.With the advances of nanofabrication technology recently, it is possible to fabricate such semiconductor quantum wells and it is possible for us to get better nonlinear materials in experiments.