应用数学
應用數學
응용수학
MATHEMATICA APPLICATA
2006年
2期
381-387
,共7页
万安华%王绵森%彭济根%毛卫华
萬安華%王綿森%彭濟根%毛衛華
만안화%왕면삼%팽제근%모위화
指数稳定性%Cohen-Grossberg神经网络%广义相对Dalquist数%指数衰减估计
指數穩定性%Cohen-Grossberg神經網絡%廣義相對Dalquist數%指數衰減估計
지수은정성%Cohen-Grossberg신경망락%엄의상대Dalquist수%지수쇠감고계
Exponential stability%Cohen-Grossberg neural networks%Generalized relative Dahlquist constant%Exponential decay estimate
本文研究了Cohen Grossberg神经网络模型的指数稳定性.为避免构造Lyapunov函数的困难,我们采用广义相对Dalquist数方法来分析神经网络的稳定性.借助这一方法,我们不但得到了Cohen-Grossberg神经网络模型平衡解的存在性、唯一性和全局指数稳定性的新的充分条件,而且给出了神经网络的指数衰减估计.所获结论改进了已有文献的相关结果.
本文研究瞭Cohen Grossberg神經網絡模型的指數穩定性.為避免構造Lyapunov函數的睏難,我們採用廣義相對Dalquist數方法來分析神經網絡的穩定性.藉助這一方法,我們不但得到瞭Cohen-Grossberg神經網絡模型平衡解的存在性、唯一性和全跼指數穩定性的新的充分條件,而且給齣瞭神經網絡的指數衰減估計.所穫結論改進瞭已有文獻的相關結果.
본문연구료Cohen Grossberg신경망락모형적지수은정성.위피면구조Lyapunov함수적곤난,아문채용엄의상대Dalquist수방법래분석신경망락적은정성.차조저일방법,아문불단득도료Cohen-Grossberg신경망락모형평형해적존재성、유일성화전국지수은정성적신적충분조건,이차급출료신경망락적지수쇠감고계.소획결론개진료이유문헌적상관결과.
In this paper,the exponential stability of Cohen-Grossberg neural network model is considered. To avoid the difficulty of constructing a proper Lyapunov function, the generalized relative Dahlquist constant approach is employed to analyze the stability of neural networks, and sufficient conditions for the existence of a unique equilibrium and the global exponential stability of CohenGrossberg neural networks are presented. Moreover,the exponential convergence rate of the neural networks to stable equilibrium point is estimated. Our results improve the existing ones.