电子元件与材料
電子元件與材料
전자원건여재료
ELECTRONIC COMPONENTS & MATERIALS
2009年
8期
30-34
,共5页
靳先静%常爱民%张惠敏%张东炎
靳先靜%常愛民%張惠敏%張東炎
근선정%상애민%장혜민%장동염
聚合络合法%微波煅烧%微波烧结%Mn0.43Ni0.90CuFe0.67O4%热敏材料
聚閤絡閤法%微波煅燒%微波燒結%Mn0.43Ni0.90CuFe0.67O4%熱敏材料
취합락합법%미파단소%미파소결%Mn0.43Ni0.90CuFe0.67O4%열민재료
polymerized complex method%microwave calcination%microwave sinter%Mn0.43Ni0.90CuFe0.67O4%thermistor materials
为了得到低B值(2 100 K)、高精度互换、均匀性好的NTC热敏电阻器,采用聚合络合法制备了Mn0.43Ni0.90CuFe0.67O4 NTC热敏材料的前驱体,在500 ℃进行热分解后获得氧化物,经不同温度微波煅烧,确定最佳温度后成型,分别进行微波烧结与常规烧结.采用TGA-DTA、FT-IR、XRD、粒度分析及SEM等手段,对材料进行表征.结果表明:微波煅烧最佳温度为650 ℃,陶瓷体由缺铜相和富铜相两相组成;微波烧结大大提高了元件的均匀性,成品率由常规烧结的30%提高至85%.
為瞭得到低B值(2 100 K)、高精度互換、均勻性好的NTC熱敏電阻器,採用聚閤絡閤法製備瞭Mn0.43Ni0.90CuFe0.67O4 NTC熱敏材料的前驅體,在500 ℃進行熱分解後穫得氧化物,經不同溫度微波煅燒,確定最佳溫度後成型,分彆進行微波燒結與常規燒結.採用TGA-DTA、FT-IR、XRD、粒度分析及SEM等手段,對材料進行錶徵.結果錶明:微波煅燒最佳溫度為650 ℃,陶瓷體由缺銅相和富銅相兩相組成;微波燒結大大提高瞭元件的均勻性,成品率由常規燒結的30%提高至85%.
위료득도저B치(2 100 K)、고정도호환、균균성호적NTC열민전조기,채용취합락합법제비료Mn0.43Ni0.90CuFe0.67O4 NTC열민재료적전구체,재500 ℃진행열분해후획득양화물,경불동온도미파단소,학정최가온도후성형,분별진행미파소결여상규소결.채용TGA-DTA、FT-IR、XRD、립도분석급SEM등수단,대재료진행표정.결과표명:미파단소최가온도위650 ℃,도자체유결동상화부동상량상조성;미파소결대대제고료원건적균균성,성품솔유상규소결적30%제고지85%.
In order to obtain NTC thermistor with low B value (2 100 K), high-precision、exchange-type and fine homogeneity, Mn0.43Ni0.90CuFe0.67O4 NTC thermistor material precursors were prepared by the polymerized complex method. The oxide mixtures were attained from calcining of the polymerized gel precursor at 500 ℃ and then were microwave-calcined at different temperatures to determine the optimum temperature. The materials were then microwave and conventionally sintered after forming. The materials were characterized by TGA-DTA, FT-IR, XRD, particle size analyzer, SEM and EDS. The experimental results indicate that the particles microwave calcined at 650 ℃ were small and uniform. The ceramics mainly consist of rich-Cu phase and poor-Cu phase. The homogeneity of components is significantly increased by microwave sinter. Moreover, the rate of finished products is increased to 80% from 30% compared with the one of conventional sinter.