地质学报
地質學報
지질학보
ACTA GEOLOGICA SINICA
2010年
3期
357-369
,共13页
戚学祥%朱路华%李化启%胡兆初%李志群
慼學祥%硃路華%李化啟%鬍兆初%李誌群
척학상%주로화%리화계%호조초%리지군
深变质带%糜棱状花岗岩%锆石LA-ICP-MS U-Pb定年%哀牢山-金沙江构造带
深變質帶%糜稜狀花崗巖%鋯石LA-ICP-MS U-Pb定年%哀牢山-金沙江構造帶
심변질대%미릉상화강암%고석LA-ICP-MS U-Pb정년%애뢰산-금사강구조대
High grade metamorphic belt%mylonitized granite%zircon LA-ICP-MS U-Pb dating%Ailaoshan-Jinshajiang tectonic zone
哀牢山-金沙江构造带糜棱状花岗岩位于哀牢山深变质带中部.锆石LA-ICP-MS U-Pb定年结果显示两个样品(08Q2-22和08Q2-15)锆石新生边的年龄分别为250.2±2.1Ma(MSWD=2.5)和247.2±2.3Ma(MSWD=0.15).石英C轴组构测定(EBSD)结果表明韧性变形变质作用形成于角闪岩相条件(500~630℃),远低于锆石结晶温度(675~864℃)和U- Pb体系的封闭温度(>800℃),对锆石内部的U-Th-Pb组成不会产生影响,结合锆石的阴极发光图像及U-Pb协和图的特点分析认为锆石LA-ICP-MS U-Pb 定年结果(247~250Ma)是对岩浆侵位时代的体现.花岗岩中白云母等过铝质矿物的出现、低钠高钾、A/CNK和A/NK都>1.0、稀土和微量元素配分模式与上地壳相似,以及大离子亲石元素和亲岩浆元素强烈富集,Sm和Y明显亏损的特征展示出过铝质、S型花岗岩的地球化学性质.(Yb+Ta)-Rb、Nb-Y、(Y+Nb)-Rb和CaO-(TFeO+MgO) 构造环境判别图解及构造带曾经历早中生代俯冲碰撞作用的历史,表明该花岗岩体形成于俯冲碰撞型构造环境.结合前人在哀牢山、点苍山深变质带中相继发现的早三叠世糜棱岩化花岗岩,以及长英质岩石韧性变形变质作用发生于中下地壳(10~15km以下)的特点,分析认为哀牢山-金沙江深变质带是早三叠世及其以前的岩石被俯冲到中下地壳发生韧性变形变质后被挤出或隆升到上地壳的,深变质变形作用形成于中生代或新生代,而非元古宙,它不是,或至少不完全是扬子地块的结晶基底.
哀牢山-金沙江構造帶糜稜狀花崗巖位于哀牢山深變質帶中部.鋯石LA-ICP-MS U-Pb定年結果顯示兩箇樣品(08Q2-22和08Q2-15)鋯石新生邊的年齡分彆為250.2±2.1Ma(MSWD=2.5)和247.2±2.3Ma(MSWD=0.15).石英C軸組構測定(EBSD)結果錶明韌性變形變質作用形成于角閃巖相條件(500~630℃),遠低于鋯石結晶溫度(675~864℃)和U- Pb體繫的封閉溫度(>800℃),對鋯石內部的U-Th-Pb組成不會產生影響,結閤鋯石的陰極髮光圖像及U-Pb協和圖的特點分析認為鋯石LA-ICP-MS U-Pb 定年結果(247~250Ma)是對巖漿侵位時代的體現.花崗巖中白雲母等過鋁質礦物的齣現、低鈉高鉀、A/CNK和A/NK都>1.0、稀土和微量元素配分模式與上地殼相似,以及大離子親石元素和親巖漿元素彊烈富集,Sm和Y明顯虧損的特徵展示齣過鋁質、S型花崗巖的地毬化學性質.(Yb+Ta)-Rb、Nb-Y、(Y+Nb)-Rb和CaO-(TFeO+MgO) 構造環境判彆圖解及構造帶曾經歷早中生代俯遲踫撞作用的歷史,錶明該花崗巖體形成于俯遲踫撞型構造環境.結閤前人在哀牢山、點蒼山深變質帶中相繼髮現的早三疊世糜稜巖化花崗巖,以及長英質巖石韌性變形變質作用髮生于中下地殼(10~15km以下)的特點,分析認為哀牢山-金沙江深變質帶是早三疊世及其以前的巖石被俯遲到中下地殼髮生韌性變形變質後被擠齣或隆升到上地殼的,深變質變形作用形成于中生代或新生代,而非元古宙,它不是,或至少不完全是颺子地塊的結晶基底.
애뢰산-금사강구조대미릉상화강암위우애뢰산심변질대중부.고석LA-ICP-MS U-Pb정년결과현시량개양품(08Q2-22화08Q2-15)고석신생변적년령분별위250.2±2.1Ma(MSWD=2.5)화247.2±2.3Ma(MSWD=0.15).석영C축조구측정(EBSD)결과표명인성변형변질작용형성우각섬암상조건(500~630℃),원저우고석결정온도(675~864℃)화U- Pb체계적봉폐온도(>800℃),대고석내부적U-Th-Pb조성불회산생영향,결합고석적음겁발광도상급U-Pb협화도적특점분석인위고석LA-ICP-MS U-Pb 정년결과(247~250Ma)시대암장침위시대적체현.화강암중백운모등과려질광물적출현、저납고갑、A/CNK화A/NK도>1.0、희토화미량원소배분모식여상지각상사,이급대리자친석원소화친암장원소강렬부집,Sm화Y명현우손적특정전시출과려질、S형화강암적지구화학성질.(Yb+Ta)-Rb、Nb-Y、(Y+Nb)-Rb화CaO-(TFeO+MgO) 구조배경판별도해급구조대증경력조중생대부충팽당작용적역사,표명해화강암체형성우부충팽당형구조배경.결합전인재애뢰산、점창산심변질대중상계발현적조삼첩세미릉암화화강암,이급장영질암석인성변형변질작용발생우중하지각(10~15km이하)적특점,분석인위애뢰산-금사강심변질대시조삼첩세급기이전적암석피부충도중하지각발생인성변형변질후피제출혹륭승도상지각적,심변질변형작용형성우중생대혹신생대,이비원고주,타불시,혹지소불완전시양자지괴적결정기저.
Mylonitized granite in the Ailaoshan-Jinshajiang tectonic zone is hosted in the center of the Ailaoshan high grade metamorphic belt. LA-ICP-MS U-Pb dating of two zircon samples (08Q2-22 and 08Q2-15) shows the ages of the growth rims of zircon grains are 250.2±2.1Ma(MSWD=2.5)and 247.2±2.3Ma(MSWD=0.15), respectively. The lattice preferred orientations by EBSD suggest that the c-axis fabrics of quartz are prism <a> slip, and the ductile deformation formed under the condition of amphibolite facies (500~630℃). This temperature is far lower than the zircon crystallized temperature (675~864℃) in magmatism and the closed temperature (>800℃) of U-Pb system in zircon, so the deformation and metamorphism can not destroy the U-Th-Pb stabilization of zircon grains crystallized during magma intrusion. The features of zircon Cathodoluminescence images and the U-Pb concordia lines of zircon indicate that the LA-ICP-MS U-Pb dating (247~250Ma) for zircon rims represents the emplacement age of granite. The granite is characterized geochemically by peraluminous minerals (e.g. muscovite), low Na and high K, A/CNK and A/NK>1.0, similar distribution of REE and trace elements geochemistry similar to those in the upper crust, as well as strong enrichment of large-ion lithophile and magmatophile elements, depletion of Sm and Y. Tectonic discrimination diagrams of (Yb+Ta)-Rb, (Y+Nb)-Rb, CaO-(TFeO+MgO) and Cenozoic subducting collision of the Ailaoshan-Jinshajiang tectonic belt all suggest that the granite formed and emplaced during the stage of collision. Combined with mylonitized granites successively discovered in the Ailaoshan and Dianchangshan high grade metamorphic belt by previous workers, and ductile deformation and metamorphism of felsic rocks occurring in the middle-lower crust (deeper than 10~15km), our study shows that the Ailaoshan-Jinshajiang metamorphic belt was the early Triassic or early rocks which were squeezed out and uplifted to the crust after it was subducted to the lower crust and suffered ductile deformation and metamorphism. Therefore, the strong metamorphism might occur in Mesozoic or Cenozoic, but not Proterozoic, and is not or completely the crystalline basement rock of Yangtze block.