铁道学报
鐵道學報
철도학보
2009年
6期
63-68
,共6页
俞祁浩%钱进%谷伟%潘喜才
俞祁浩%錢進%穀偉%潘喜纔
유기호%전진%곡위%반희재
青藏铁路%自控通风路基%降温%效能
青藏鐵路%自控通風路基%降溫%效能
청장철로%자공통풍로기%강온%효능
the Qinghai-Tibet Railway%auto-controlled duct-ventilated embankment%cooling%efficiency
自动温控通风路基(自控路基)是基于通风路基的一种新型工程措施,自控系统通过充分利用冷能,可在很大程度上提升通风路基的降温效能.青藏铁路北麓河试验段自控路基的现场观测资料表明,自控系统实施后,通过暖季对通风管内对流换热作用的限制,路基的传热方式以热传导为主,由此使得通风管内整体升温幅度均小于通风路基,自控路基通风管内温度较通风路基约低1.0℃,且中心温度最低;在自控路基中,路基下3.5 m深度原多年冻土上限附近的地温降温幅度更为显著,在自控措施实施后两年的时间里,通过与通风路基对比发现,两者最高温度在降温过程基本一致的情况下,最低温度差值呈现不断扩大的趋势,观测期内最大差值为0.45℃;路基下3.0~3.5 m位置的热流计算表明,自控路基对应的年均放热热流量约为通风路基的2倍,即从传热角度说明,通过自控系统的实施可以提高通风路基的降温效能1倍左右;同时,自控措施将通风路基有效放热时间增加约40 d,这也是自控路基降温效能表现突出的原因之一.
自動溫控通風路基(自控路基)是基于通風路基的一種新型工程措施,自控繫統通過充分利用冷能,可在很大程度上提升通風路基的降溫效能.青藏鐵路北麓河試驗段自控路基的現場觀測資料錶明,自控繫統實施後,通過暖季對通風管內對流換熱作用的限製,路基的傳熱方式以熱傳導為主,由此使得通風管內整體升溫幅度均小于通風路基,自控路基通風管內溫度較通風路基約低1.0℃,且中心溫度最低;在自控路基中,路基下3.5 m深度原多年凍土上限附近的地溫降溫幅度更為顯著,在自控措施實施後兩年的時間裏,通過與通風路基對比髮現,兩者最高溫度在降溫過程基本一緻的情況下,最低溫度差值呈現不斷擴大的趨勢,觀測期內最大差值為0.45℃;路基下3.0~3.5 m位置的熱流計算錶明,自控路基對應的年均放熱熱流量約為通風路基的2倍,即從傳熱角度說明,通過自控繫統的實施可以提高通風路基的降溫效能1倍左右;同時,自控措施將通風路基有效放熱時間增加約40 d,這也是自控路基降溫效能錶現突齣的原因之一.
자동온공통풍로기(자공로기)시기우통풍로기적일충신형공정조시,자공계통통과충분이용랭능,가재흔대정도상제승통풍로기적강온효능.청장철로북록하시험단자공로기적현장관측자료표명,자공계통실시후,통과난계대통풍관내대류환열작용적한제,로기적전열방식이열전도위주,유차사득통풍관내정체승온폭도균소우통풍로기,자공로기통풍관내온도교통풍로기약저1.0℃,차중심온도최저;재자공로기중,로기하3.5 m심도원다년동토상한부근적지온강온폭도경위현저,재자공조시실시후량년적시간리,통과여통풍로기대비발현,량자최고온도재강온과정기본일치적정황하,최저온도차치정현불단확대적추세,관측기내최대차치위0.45℃;로기하3.0~3.5 m위치적열류계산표명,자공로기대응적년균방열열류량약위통풍로기적2배,즉종전열각도설명,통과자공계통적실시가이제고통풍로기적강온효능1배좌우;동시,자공조시장통풍로기유효방열시간증가약40 d,저야시자공로기강온효능표현돌출적원인지일.
The temperature controlled ventilated embankment (TCVE) is a new engineering measure to take with the duct-ventilated embankment. TCVE improves the cooling efficiency of the duct-ventilated embankment greatly by making full use of cool energy. The field observation data of the Beiluhe temperature controlled ventilated test section of the Qinghai-Tibet Railway show as follows: In the warm seasons,TCVE prevents heat convection between the inside and the outside of the ducts,make heat conduction become the main mode of heat transfer in the embankment,and so decreases the general temperature rising amplitude inside the ducts as compared with the duct-ventilated embankment,thus bringing the temperature inside the ducts 1℃ lower than that of the duct-ventilated embankment and even lower at the centre of the inside of the ducts;comparing to the common duct-ventilated embankment,the cooling effect is even better at the depth of 3.5 m under the ground near the primary permafrost table; after two years of installation of the auto-controlled system,although the peak values of TCVE and the duct-ventilated embankment are basically the same in the coding process,the difference in the lowest temperatures continues to show an increasing tendency and the maximum difference during observation reaches 0.45℃; by calculation of the heat flow at the depth of 3.0~3.5 m under the embankment,the mean annual heat release is found double as that of the common duct-ventilated embankment,and this means that the auto-controlled system can improve the duct-ventilated embankment efficiency by about two times; furthermore,the effective heat release time is prolonged about 40 days,and this is one of the reasons for the good cooling efficiency of TCVE.