中华胰腺病杂志
中華胰腺病雜誌
중화이선병잡지
CHINESE JOURNAL OF PANCREATOLOGY
2012年
5期
306-309
,共4页
吴健婷%田字彬%丁雪丽%荆雪%江月萍%魏良洲%孔心涓%张翠萍%赵清喜
吳健婷%田字彬%丁雪麗%荊雪%江月萍%魏良洲%孔心涓%張翠萍%趙清喜
오건정%전자빈%정설려%형설%강월평%위량주%공심연%장취평%조청희
糖尿病%胰腺肿瘤%蛋白质组学%表面增强激光解析电离飞行时间质谱技术
糖尿病%胰腺腫瘤%蛋白質組學%錶麵增彊激光解析電離飛行時間質譜技術
당뇨병%이선종류%단백질조학%표면증강격광해석전리비행시간질보기술
Diabetes mellitus%Pancreatic neoplasms%Proteomics%SELDI-TOF-MS
目的 检测胰腺癌相关糖尿病的血清蛋白标志物,并建立诊断模型.方法 应用表面增强激光解析电离飞行时间质谱( SELDI-TOF-MS)技术检测17例胰腺癌相关糖尿病与17例新发2型糖尿病、17例健康对照者血清的差异表达蛋白,用Biomarker Patterns Software 5.0软件建立胰腺癌相关糖尿病诊断模型并验证.结果 在胰腺癌相关糖尿病、新发2型糖尿病,健康者各10例的蛋白指纹图谱中筛选出12个差异表达蛋白峰,其中质荷比为6116、6695、8936 Da的蛋白峰被选为建立胰腺癌相关糖尿病诊断模型的蛋白峰.该诊断模型的诊断正确率为90%.盲法验证各组另7例样本,正确诊断胰腺癌相关糖尿病患者达100%,新发2型糖尿病患者为71%,健康人群为86%.经检索蛋白质数据库,与以上3种差异表达蛋白分子质量最为接近的蛋白分别为金属硫蛋白、胰腺干细胞增殖分化因子和成纤维细胞生长因子 1.结论 通过SELDI方法筛选出3种胰腺癌相关糖尿病的血清蛋白标志物,建立了可靠的胰腺癌相关糖尿病的诊断模型.
目的 檢測胰腺癌相關糖尿病的血清蛋白標誌物,併建立診斷模型.方法 應用錶麵增彊激光解析電離飛行時間質譜( SELDI-TOF-MS)技術檢測17例胰腺癌相關糖尿病與17例新髮2型糖尿病、17例健康對照者血清的差異錶達蛋白,用Biomarker Patterns Software 5.0軟件建立胰腺癌相關糖尿病診斷模型併驗證.結果 在胰腺癌相關糖尿病、新髮2型糖尿病,健康者各10例的蛋白指紋圖譜中篩選齣12箇差異錶達蛋白峰,其中質荷比為6116、6695、8936 Da的蛋白峰被選為建立胰腺癌相關糖尿病診斷模型的蛋白峰.該診斷模型的診斷正確率為90%.盲法驗證各組另7例樣本,正確診斷胰腺癌相關糖尿病患者達100%,新髮2型糖尿病患者為71%,健康人群為86%.經檢索蛋白質數據庫,與以上3種差異錶達蛋白分子質量最為接近的蛋白分彆為金屬硫蛋白、胰腺榦細胞增殖分化因子和成纖維細胞生長因子 1.結論 通過SELDI方法篩選齣3種胰腺癌相關糖尿病的血清蛋白標誌物,建立瞭可靠的胰腺癌相關糖尿病的診斷模型.
목적 검측이선암상관당뇨병적혈청단백표지물,병건립진단모형.방법 응용표면증강격광해석전리비행시간질보( SELDI-TOF-MS)기술검측17례이선암상관당뇨병여17례신발2형당뇨병、17례건강대조자혈청적차이표체단백,용Biomarker Patterns Software 5.0연건건립이선암상관당뇨병진단모형병험증.결과 재이선암상관당뇨병、신발2형당뇨병,건강자각10례적단백지문도보중사선출12개차이표체단백봉,기중질하비위6116、6695、8936 Da적단백봉피선위건립이선암상관당뇨병진단모형적단백봉.해진단모형적진단정학솔위90%.맹법험증각조령7례양본,정학진단이선암상관당뇨병환자체100%,신발2형당뇨병환자위71%,건강인군위86%.경검색단백질수거고,여이상3충차이표체단백분자질량최위접근적단백분별위금속류단백、이선간세포증식분화인자화성섬유세포생장인자 1.결론 통과SELDI방법사선출3충이선암상관당뇨병적혈청단백표지물,건립료가고적이선암상관당뇨병적진단모형.
Objective To detect serum biomarkers for pancreatic cancer associated diabetes and establish a model for diagnosis.Methods SELDI-TOF-MS was used to detect the differentially expressed serum proteins from 17 pancreatic cancer associated diabetes patients,17 new-onset type Ⅱ diabetes patients and 17 healthy controls,then a model of biomarkers was constructed and validated by Biomarker Patterns Software 5.0.Results Twelve discriminating m/z peaks were identified in the protein fingerprints in 10 pancreatic cancer associated diabetes patients,10 new-onset type Ⅱ diabetes patients and 10 healthy controls.Among them,the three biomarkers of mass/charge ratio 6116,6695 and 8936 were used to construct the model,which could diagnose 90% pancreatic cancer associated diabetes form control groups.Blind test of other7 samples of three groups showed that 100% pancreatic cancer associated diabetes,71% new-onset diabetes and 86% healthy controls were correctly classified.After searching protein database,there were metallothionein,pancreatic progenitor cell differentiation and proliferation factor-like protein,and fibroblastic growth factor 1,which were close to the weights of the above mentioned 3 differentially expressed proteins.Conclusions SELDI can identify 3 biomarkers for pancreatic cancer associated diabetes and a reliable model for diagnosis of pancreatic cancer associated diabetes is established.