中华流行病学杂志
中華流行病學雜誌
중화류행병학잡지
CHINESE JOURNAL OF EPIDEMIOLOGY
2012年
7期
698-701
,共4页
丁磊%丁淑军%张萌%王显军%李忠%赵仲堂
丁磊%丁淑軍%張萌%王顯軍%李忠%趙仲堂
정뢰%정숙군%장맹%왕현군%리충%조중당
恙虫病%时间序列分析%流行趋势
恙蟲病%時間序列分析%流行趨勢
양충병%시간서렬분석%류행추세
Scrub typhus%Time series analysis%Epidemic trend
目的 应用时间序列分析探讨秋冬型恙虫病的时间分布特征及趋势.方法 基于山东省疾病报告信息系统2006-2011年恙虫病监测数据,对以年为单位的监测数据采用频谱分析、移动平均分析,预测2012-2014年该病发病数;以月为单位的数据进行乘法季节效应分析,进行差分自回归移动平均模型(ARIMA)建模拟合,预测2011年11、12月秋冬型恙虫病发病情况,并与实际发病数进行比较.结果 频谱分析结果显示秋冬型恙虫病流行周期为3年;移动平均分析表明其流行强度将持续增强,2012-2014年各年预测发病数分别为310、337、366例,年增长率约9%.乘法季节效应分析显示该病符合秋冬型流行特点,10、11月季节效应指数分别为8.454、2.230,其他月份指数均< 1.000; ARIMA(0,1,1)(0,1,0)12模型为(1-B)(1 -B12)Xt=(1-0.811B)ut,残差序列为白噪声,Box- Ljung统计量为3.116,P=0.999,模型拟合效果良好.应用该模型预测2011年11、12月发病数,预测值与实际发病数相符,实际观测值均在预测值的95%CI内.结论 秋冬型恙虫病流行可能具有周期性,总体流行强度将持续增强,2012-2014年该病年增长率约为9%;每年以10月流行最严重,应用ARIMA(0,1,1)(0,1,0)12模型可较好地预测发病情况.
目的 應用時間序列分析探討鞦鼕型恙蟲病的時間分佈特徵及趨勢.方法 基于山東省疾病報告信息繫統2006-2011年恙蟲病鑑測數據,對以年為單位的鑑測數據採用頻譜分析、移動平均分析,預測2012-2014年該病髮病數;以月為單位的數據進行乘法季節效應分析,進行差分自迴歸移動平均模型(ARIMA)建模擬閤,預測2011年11、12月鞦鼕型恙蟲病髮病情況,併與實際髮病數進行比較.結果 頻譜分析結果顯示鞦鼕型恙蟲病流行週期為3年;移動平均分析錶明其流行彊度將持續增彊,2012-2014年各年預測髮病數分彆為310、337、366例,年增長率約9%.乘法季節效應分析顯示該病符閤鞦鼕型流行特點,10、11月季節效應指數分彆為8.454、2.230,其他月份指數均< 1.000; ARIMA(0,1,1)(0,1,0)12模型為(1-B)(1 -B12)Xt=(1-0.811B)ut,殘差序列為白譟聲,Box- Ljung統計量為3.116,P=0.999,模型擬閤效果良好.應用該模型預測2011年11、12月髮病數,預測值與實際髮病數相符,實際觀測值均在預測值的95%CI內.結論 鞦鼕型恙蟲病流行可能具有週期性,總體流行彊度將持續增彊,2012-2014年該病年增長率約為9%;每年以10月流行最嚴重,應用ARIMA(0,1,1)(0,1,0)12模型可較好地預測髮病情況.
목적 응용시간서렬분석탐토추동형양충병적시간분포특정급추세.방법 기우산동성질병보고신식계통2006-2011년양충병감측수거,대이년위단위적감측수거채용빈보분석、이동평균분석,예측2012-2014년해병발병수;이월위단위적수거진행승법계절효응분석,진행차분자회귀이동평균모형(ARIMA)건모의합,예측2011년11、12월추동형양충병발병정황,병여실제발병수진행비교.결과 빈보분석결과현시추동형양충병류행주기위3년;이동평균분석표명기류행강도장지속증강,2012-2014년각년예측발병수분별위310、337、366례,년증장솔약9%.승법계절효응분석현시해병부합추동형류행특점,10、11월계절효응지수분별위8.454、2.230,기타월빈지수균< 1.000; ARIMA(0,1,1)(0,1,0)12모형위(1-B)(1 -B12)Xt=(1-0.811B)ut,잔차서렬위백조성,Box- Ljung통계량위3.116,P=0.999,모형의합효과량호.응용해모형예측2011년11、12월발병수,예측치여실제발병수상부,실제관측치균재예측치적95%CI내.결론 추동형양충병류행가능구유주기성,총체류행강도장지속증강,2012-2014년해병년증장솔약위9%;매년이10월류행최엄중,응용ARIMA(0,1,1)(0,1,0)12모형가교호지예측발병정황.
Objective To explore the characteristics of temporal distribution and epidemic trend of autumn-winter type scrub typhus using the time series analysis.Methods Based on the data of scrub typhus collected from Shandong Diseases Reporting Information System from 2006 to 2011,both spectral analysis and moving average analysis were used to analyze the annual data of scrub typhus while scrub typhus incidence in 2012-2014 was forecasted.Seasonal decomposition analysis was applied to analyze the monthly data from January of 2006 to October of 2011,followed by Autoregressive Integrated Moving Average Model (ARIMA) which was constructed to forecast case number in November and December of 2011 and compared to the actual incidence.Results The results of spectral analysis showed that the prevalence of autumn-winter type scrub typhus had a feature of ‘3-year-periodicity’.A long-term up-trend was confirmed by method of moving average analysis,with annually case numbers of 310,337 and another number of 366 forecasted for 2012 to 2014,respectively,with the annual increase rate as 9% per-year.Data from analysis of monthly data of scrub typhus showed that through multiple seasonal decomposition analysis,the results indicated that the prevalence of this disease possessed a typical autumn-winter type.The seasonality indexes for scrub typhus in October and November were 8.454 and 2.230,respectively,while others were less than 1.000.The ARIMA (0,1,1 ) (0,1,0)12 model of ( 1 -B) ( 1 -B12)X,=( 1 -0.811B)u,that was used to forecast the prevalence of autumn-winter type scrub typhus and was constructed with the residual error of 16 lags as white noise.The Box-Ljung test statistic for the model was 3.116,giving a P value of 0.999.The model fitted the data well.Good accordance was achieved between the observed values and the forecasted values of scrub typhus in November and December of 2011 which was produced by the ARIMA model,and all observed values were within the forecasted 95% CI.Conclusion The prevalence of autumn-winter type scrub typhus showed a 3-year-periodicity,with a long-term up-trend,and the case numbers of 2012 to 2014 were forecasted,rising on the end with an increasing rate of 9% per year,which occurred seasonally with October as the peak time in every year.The ARIMA (0,1,1 ) (0,1,0) 12 model seemed to be quite appropriate in predicting the autumn-winter type scrub typhus.