电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2011年
10期
159-164
,共6页
光伏发电系统%非线性自回归外推%模型辨识%改%进小波神经网络%方差分析
光伏髮電繫統%非線性自迴歸外推%模型辨識%改%進小波神經網絡%方差分析
광복발전계통%비선성자회귀외추%모형변식%개%진소파신경망락%방차분석
photovoltaic generation system%nonlinear autoregressive exogenous%model identification%modified wavelet neural network%analysis of variance
将光伏发电系统看成基于气象参数的非线性黑箱模型,用非线性自回归外推模型对不同天气条件下的光伏发电系统进行辨识。采用了对系统维数不敏感的基于方差分析展开的改进小波神经网络对系统进行非线性自回归外推模型辨识,辨识数据和验证数据均取自实际光伏发电系统。实例研究结果表明:与Sigmoid网络函数法、树分割法及基本小波神经网络法相比,基于改进小波神经网络的非线性自回归外推模型能更好地反应各种不同天气条件下光伏发电系统的动态行为;天气波动的剧烈程度对辨识效果影响较大。
將光伏髮電繫統看成基于氣象參數的非線性黑箱模型,用非線性自迴歸外推模型對不同天氣條件下的光伏髮電繫統進行辨識。採用瞭對繫統維數不敏感的基于方差分析展開的改進小波神經網絡對繫統進行非線性自迴歸外推模型辨識,辨識數據和驗證數據均取自實際光伏髮電繫統。實例研究結果錶明:與Sigmoid網絡函數法、樹分割法及基本小波神經網絡法相比,基于改進小波神經網絡的非線性自迴歸外推模型能更好地反應各種不同天氣條件下光伏髮電繫統的動態行為;天氣波動的劇烈程度對辨識效果影響較大。
장광복발전계통간성기우기상삼수적비선성흑상모형,용비선성자회귀외추모형대불동천기조건하적광복발전계통진행변식。채용료대계통유수불민감적기우방차분석전개적개진소파신경망락대계통진행비선성자회귀외추모형변식,변식수거화험증수거균취자실제광복발전계통。실례연구결과표명:여Sigmoid망락함수법、수분할법급기본소파신경망락법상비,기우개진소파신경망락적비선성자회귀외추모형능경호지반응각충불동천기조건하광복발전계통적동태행위;천기파동적극렬정도대변식효과영향교대。
Regarding photovoltaic (PV) generation system as a nonlinear black box model based on meteorological parameters, the PV generation system under different weather conditions is identified by nonlinear autoregressive exogenous (NARX) model. The modified wavelet neural network (WNN) insensitive to system dimension, which is expanded by variance analysis, is used to identify PV generation system by NARX model, and both identification data and the validating data are taken from actual PV generation system. Case study results show that the modified WNN based NARX model can reflect dynamic behavior of PV generation system under different whether conditions better than Sigmoid network function, partition tree method and basic WNN, and the results also show that the identification effect is affected significantly by the weather fluctuation.