中国组织工程研究与临床康复
中國組織工程研究與臨床康複
중국조직공정연구여림상강복
JOURNAL OF CLINICAL REHABILITATIVE TISSUE ENGINEERING RESEARCH
2007年
35期
7117-7120
,共4页
徐志强%刘彬%王艳萍%徐世荣%麻开旺%戴小珍%徐志玲%付小兵%李校堃%蔡绍皙
徐誌彊%劉彬%王豔萍%徐世榮%痳開旺%戴小珍%徐誌玲%付小兵%李校堃%蔡紹皙
서지강%류빈%왕염평%서세영%마개왕%대소진%서지령%부소병%리교곤%채소석
组织工程支架%生物力学%PLGA%脱细胞血管%脱细胞猪皮
組織工程支架%生物力學%PLGA%脫細胞血管%脫細胞豬皮
조직공정지가%생물역학%PLGA%탈세포혈관%탈세포저피
背景:采用工程学的方法来构建人体组织及器官的替代品以及介入治疗的器械是目前生物组织工程领域的研究热点,而材料的选择是其核心.所制备的移植物,至少要能够赖受住移植过程中的各种外力而不至于破碎.故对被作为原料应用于组织工程领域的常用物质的力学性质进行评价,可以为组织工程研究中的材料选择提供依据.目的:考察9种组织工程支架材料的力学性能,为组织工程支架的设计、制作的选材提供力学依据.设计:重复测量试验.单位:重庆大学生物工程学院.材料:以聚乳酸-羟基乙酸共聚物(PLGA)、胶原、海藻酸钠、脱细胞猪皮、脱细胞血管、脱细胞猪皮-PLGA的复合体、脱细胞血管-聚乳酸/聚羟乙酸共聚物的复合体以及经改性的壳聚糖和明胶作为考察材料.方法:实验于2006-04/2007-03在重庆大学生物工程学院生物流变学实验室完成.制备上述9种材料试件,同时对壳聚糖和明胶进行改性.然后用INSTRON 1011拉伸实验机对其进行拉伸试验.拉伸速度为10 mm/min,在应变范围(0.005~0.02)内计算试件的杨氏模量,并获得最大应变和最大应力.主要观察指标:9种材料的最大应变、最大应力及杨氏模量结果:①最大应变:脆性依次增大的顺序是:脱细胞猪皮>脱细胞猪皮-PLGA>脱细胞血管>海藻酸钠>脱细胞血管-PLGA>胶原>明胶(P<0.05);壳聚糖和PLGA的断裂伸长率比其他7种材料高出很多,分别为133%和276%,差异有显著性意义(P<0.05).在与PLGA复合后,脱细胞血管和脱细胞猪皮的断裂伸长率均变小,即脆性增加.②最大应力:脱细胞猪皮以及与PLGA共混后的最大应力即断裂强度均明显高于其他材料,且与PLGA共混后的脱细胞猪皮的断裂强度也略高于脱细胞猪皮.明胶、壳聚糖和脱细胞血管的断裂强度大体相当,介于7.67~9.51 MPa.胶原和海藻酸钠的断裂强度最低,介于1.16~1.40 MPa.同时,与PLGA共混后的脱细胞血管的断裂强度明显低于脱细胞血管,差异有显著性意义(P<0.05).③杨氏模量:明胶的杨氏模量及硬度最大,而且远远大于其他各种材料.脱细胞猪皮的杨氏模量及硬度最低.与PLGA共混后的脱细胞血管及脱细胞猪皮的硬度均增大,差异有显著性意义(P<0.05),并于PLGA相当.除明胶以外,其他各材料硬度由大到小的排列顺序依次是:脱细胞血管-PLGA、PLGA、脱细胞猪皮-PLGA、脱细胞血管、壳聚糖、海藻酸钠、胶原、脱细胞猪皮.结论:①脱细胞血管及脱细胞猪皮具有良好的力学性质.②与组织来源的材料即脱细胞血管及脱细胞猪皮相比,PLGA的韧性较好,强度较低,硬度偏高.③海藻酸钠、明胶、壳聚糖的力学性质有望通过与PLGA的复合而得到改善.
揹景:採用工程學的方法來構建人體組織及器官的替代品以及介入治療的器械是目前生物組織工程領域的研究熱點,而材料的選擇是其覈心.所製備的移植物,至少要能夠賴受住移植過程中的各種外力而不至于破碎.故對被作為原料應用于組織工程領域的常用物質的力學性質進行評價,可以為組織工程研究中的材料選擇提供依據.目的:攷察9種組織工程支架材料的力學性能,為組織工程支架的設計、製作的選材提供力學依據.設計:重複測量試驗.單位:重慶大學生物工程學院.材料:以聚乳痠-羥基乙痠共聚物(PLGA)、膠原、海藻痠鈉、脫細胞豬皮、脫細胞血管、脫細胞豬皮-PLGA的複閤體、脫細胞血管-聚乳痠/聚羥乙痠共聚物的複閤體以及經改性的殼聚糖和明膠作為攷察材料.方法:實驗于2006-04/2007-03在重慶大學生物工程學院生物流變學實驗室完成.製備上述9種材料試件,同時對殼聚糖和明膠進行改性.然後用INSTRON 1011拉伸實驗機對其進行拉伸試驗.拉伸速度為10 mm/min,在應變範圍(0.005~0.02)內計算試件的楊氏模量,併穫得最大應變和最大應力.主要觀察指標:9種材料的最大應變、最大應力及楊氏模量結果:①最大應變:脆性依次增大的順序是:脫細胞豬皮>脫細胞豬皮-PLGA>脫細胞血管>海藻痠鈉>脫細胞血管-PLGA>膠原>明膠(P<0.05);殼聚糖和PLGA的斷裂伸長率比其他7種材料高齣很多,分彆為133%和276%,差異有顯著性意義(P<0.05).在與PLGA複閤後,脫細胞血管和脫細胞豬皮的斷裂伸長率均變小,即脆性增加.②最大應力:脫細胞豬皮以及與PLGA共混後的最大應力即斷裂彊度均明顯高于其他材料,且與PLGA共混後的脫細胞豬皮的斷裂彊度也略高于脫細胞豬皮.明膠、殼聚糖和脫細胞血管的斷裂彊度大體相噹,介于7.67~9.51 MPa.膠原和海藻痠鈉的斷裂彊度最低,介于1.16~1.40 MPa.同時,與PLGA共混後的脫細胞血管的斷裂彊度明顯低于脫細胞血管,差異有顯著性意義(P<0.05).③楊氏模量:明膠的楊氏模量及硬度最大,而且遠遠大于其他各種材料.脫細胞豬皮的楊氏模量及硬度最低.與PLGA共混後的脫細胞血管及脫細胞豬皮的硬度均增大,差異有顯著性意義(P<0.05),併于PLGA相噹.除明膠以外,其他各材料硬度由大到小的排列順序依次是:脫細胞血管-PLGA、PLGA、脫細胞豬皮-PLGA、脫細胞血管、殼聚糖、海藻痠鈉、膠原、脫細胞豬皮.結論:①脫細胞血管及脫細胞豬皮具有良好的力學性質.②與組織來源的材料即脫細胞血管及脫細胞豬皮相比,PLGA的韌性較好,彊度較低,硬度偏高.③海藻痠鈉、明膠、殼聚糖的力學性質有望通過與PLGA的複閤而得到改善.
배경:채용공정학적방법래구건인체조직급기관적체대품이급개입치료적기계시목전생물조직공정영역적연구열점,이재료적선택시기핵심.소제비적이식물,지소요능구뢰수주이식과정중적각충외력이불지우파쇄.고대피작위원료응용우조직공정영역적상용물질적역학성질진행평개,가이위조직공정연구중적재료선택제공의거.목적:고찰9충조직공정지가재료적역학성능,위조직공정지가적설계、제작적선재제공역학의거.설계:중복측량시험.단위:중경대학생물공정학원.재료:이취유산-간기을산공취물(PLGA)、효원、해조산납、탈세포저피、탈세포혈관、탈세포저피-PLGA적복합체、탈세포혈관-취유산/취간을산공취물적복합체이급경개성적각취당화명효작위고찰재료.방법:실험우2006-04/2007-03재중경대학생물공정학원생물류변학실험실완성.제비상술9충재료시건,동시대각취당화명효진행개성.연후용INSTRON 1011랍신실험궤대기진행랍신시험.랍신속도위10 mm/min,재응변범위(0.005~0.02)내계산시건적양씨모량,병획득최대응변화최대응력.주요관찰지표:9충재료적최대응변、최대응력급양씨모량결과:①최대응변:취성의차증대적순서시:탈세포저피>탈세포저피-PLGA>탈세포혈관>해조산납>탈세포혈관-PLGA>효원>명효(P<0.05);각취당화PLGA적단렬신장솔비기타7충재료고출흔다,분별위133%화276%,차이유현저성의의(P<0.05).재여PLGA복합후,탈세포혈관화탈세포저피적단렬신장솔균변소,즉취성증가.②최대응력:탈세포저피이급여PLGA공혼후적최대응력즉단렬강도균명현고우기타재료,차여PLGA공혼후적탈세포저피적단렬강도야략고우탈세포저피.명효、각취당화탈세포혈관적단렬강도대체상당,개우7.67~9.51 MPa.효원화해조산납적단렬강도최저,개우1.16~1.40 MPa.동시,여PLGA공혼후적탈세포혈관적단렬강도명현저우탈세포혈관,차이유현저성의의(P<0.05).③양씨모량:명효적양씨모량급경도최대,이차원원대우기타각충재료.탈세포저피적양씨모량급경도최저.여PLGA공혼후적탈세포혈관급탈세포저피적경도균증대,차이유현저성의의(P<0.05),병우PLGA상당.제명효이외,기타각재료경도유대도소적배렬순서의차시:탈세포혈관-PLGA、PLGA、탈세포저피-PLGA、탈세포혈관、각취당、해조산납、효원、탈세포저피.결론:①탈세포혈관급탈세포저피구유량호적역학성질.②여조직래원적재료즉탈세포혈관급탈세포저피상비,PLGA적인성교호,강도교저,경도편고.③해조산납、명효、각취당적역학성질유망통과여PLGA적복합이득도개선.
BACKGROUND:It is still a research focus on constructing substitution of the human tissues and organs, or producing the alliance for grafting by engineering methods in tissue engineering. Among these researches, it is pivotal to choose appropriate materials. The prepared scaffolds should have suitable tensile strength and mechanical toughness to withstand the various outside forces without being damaged. So, it is very necessary to evaluate the biomechanical properties of candidated materials in tissue engineering, which can supply the references for selecting materials for tissue scaffolds and their designation.OBJECTIVE: To investigate the biomechanical properties of nine kinds of scaffold materials, in order to supply a biomechanical basis for the selection and design of scaffold materials for tissue engineering.DESIGN: A repetitive measurement study.SETTING: College of Bioengineering, Chongqing University.MATERIALS: The materials involved in this study were poly (DL-lactic-co - glycolic acid) (PLGA), sodium polymannuronate, gelatine, chitosan, collagen, acellular porcine dermis (APD), acellular vascular matrix (AVM),APD-PLGA, AVM-PLGA, modified gelatine and chitosan.METHODS: All the experiments related to this study were completed in the Biorheology laboratory of the College of Bioengineering, Chongqing University from April 2006 to March 2007. The nine materials above were prepared, gelatine and chitosan were modified. Stress-strain testing was performed at 10 mm per minute by a material testing machine (INSTRON 1011, USA). The Yang's modulus was calculated in the range of 0.005 to 0.02, the ultimate strain and stress were also obtained.MAIN OUTCOME MEASURES: The ultimate strain, ultimate stress and Yang's modulus of the nine materials were analyzed.polymannuronate > AVM-PLGA > collagen > gelatine (P < 0.05). The rate of burst straining of chitosan and PLGA were greater than those of other materials, 133% and 276% respectively (P < 0.05). In addition, after being combined with ultimate stresses of APD and APD-PLGA were greater than that of other materials, i.e., their burst strengths were greater than those of other materials. The data also indicated that the burst strength of APD-PLGA was a little greater than that of APD (P > 0.05). The burst strengths of gelatin, chitosan, and collagen were similar at the range of 7.67 to 9.51 MPa (P > 0.05). The burst strengths of collagen and sodium polymannuronate were from 1.16 to 1.40 MPa, which were the least among all the materials. At the same time, being combined with PLGA, the burst strength of AVM-PLGA greatest, i.e., its rigidity was the greatest. The rigidity of APD was the least. After combined with PLGA, the rigidity of AVM and APD were increased (P < 0.05), and corresponded with PLGA (P> 0.05). Except for gelatin, the order of rigidity in the materials was AVM-PLGA > PLGA > APD-PLGA > AVM > chitosan > sodium polymannuronate > collagen > APD.CONCLUSION: AVM and APD have good biomechanical properties, which are very different from the water-soluble collagen. It is promising to improve the biomechanical properties of sodium polymannuronate, gelatin and chitosan by the complex of PLGA.