新型炭材料
新型炭材料
신형탄재료
NEW CARBON MATERIALS
2010年
5期
370-375
,共6页
周晋%袁勋%邢伟%司维江%禚淑萍
週晉%袁勛%邢偉%司維江%禚淑萍
주진%원훈%형위%사유강%작숙평
双电层电容器%柠檬酸盐%双峰孔炭%储能%离子液体
雙電層電容器%檸檬痠鹽%雙峰孔炭%儲能%離子液體
쌍전층전용기%저몽산염%쌍봉공탄%저능%리자액체
Electrochemical double-layer capacitors%Citrates%Bimodal porous carbon%Energy storage%Ionic liquid
热解柠檬酸镁或柠檬酸钡,制备了两种介孔炭(MgC或BaC),并将其用作双电层电容器电极材料.采用氮气吸附、扫描电子显微镜和傅里叶红外光谱对所制介孔炭进行表征.结果表明:所制介孔炭孔结构与柠檬酸盐所含金属阳离子有关.其中,BaC呈典型的双峰孔径分布,最可几孔径分别为3. 8nm和15nm;而MgC的孔道主要是小尺寸的介孔或微孔.通过循环伏安、恒流充放电法测试所制介孔炭作为电化学电容器电极材料时的电化学性质.测试表明,在离子液体中MgC和BaC都具有很高的比电容值,分别达到180F·g-1和171F·g-1.其中,BaC的倍率性能良好,能量密度可达到53. 3Wh·kg-1,最大功率密度为20kW·kg-1.BaC优良的电容特性主要归因于其孔径双峰分布的孔结构和亲水性表面化学性质.
熱解檸檬痠鎂或檸檬痠鋇,製備瞭兩種介孔炭(MgC或BaC),併將其用作雙電層電容器電極材料.採用氮氣吸附、掃描電子顯微鏡和傅裏葉紅外光譜對所製介孔炭進行錶徵.結果錶明:所製介孔炭孔結構與檸檬痠鹽所含金屬暘離子有關.其中,BaC呈典型的雙峰孔徑分佈,最可幾孔徑分彆為3. 8nm和15nm;而MgC的孔道主要是小呎吋的介孔或微孔.通過循環伏安、恆流充放電法測試所製介孔炭作為電化學電容器電極材料時的電化學性質.測試錶明,在離子液體中MgC和BaC都具有很高的比電容值,分彆達到180F·g-1和171F·g-1.其中,BaC的倍率性能良好,能量密度可達到53. 3Wh·kg-1,最大功率密度為20kW·kg-1.BaC優良的電容特性主要歸因于其孔徑雙峰分佈的孔結構和親水性錶麵化學性質.
열해저몽산미혹저몽산패,제비료량충개공탄(MgC혹BaC),병장기용작쌍전층전용기전겁재료.채용담기흡부、소묘전자현미경화부리협홍외광보대소제개공탄진행표정.결과표명:소제개공탄공결구여저몽산염소함금속양리자유관.기중,BaC정전형적쌍봉공경분포,최가궤공경분별위3. 8nm화15nm;이MgC적공도주요시소척촌적개공혹미공.통과순배복안、항류충방전법측시소제개공탄작위전화학전용기전겁재료시적전화학성질.측시표명,재리자액체중MgC화BaC도구유흔고적비전용치,분별체도180F·g-1화171F·g-1.기중,BaC적배솔성능량호,능량밀도가체도53. 3Wh·kg-1,최대공솔밀도위20kW·kg-1.BaC우량적전용특성주요귀인우기공경쌍봉분포적공결구화친수성표면화학성질.
Two mesoporous carbons were prepared by simple pyrolysis of commercial magnesium or barium citrate and tested as electrode materials for electrochemical double-layer capacitors (EDLCs), denoted MgC and BaC, respectively. The as-prepared carbon materials were characterized by N2 adsorption, scanning electron microscopy and Fourier transform infrared spectrometry. Nitrogen adsorption measurements demonstrated that the porosity of the prepared carbons was related to the type of metal cation. BaC possesses a typical bimodal pore size distribution (PSD) at 3.8 and about 15nm, while MgC was between small-size mesoporous and microporous. The carbons were tested as electrode materials using different electrochemical means such as cyclic voltammetry and constant current charge-discharge. Very high specific capacitance (180F·g-1 for MgC and 171F·g-1 for BaC) was achieved in an ionic liquid electrolyte. BaC proved to be an excellent electrode material with a high rate performance for EDLC application and exhibited an energy density up to 53.3Wh·kg-1 and a high maximum specific power density of 20kW·kg-1 in IL electrolyte. The good capacitive performance of BaC is attributed to its bimodal PSD and hydrophilic surface properties.