仪器仪表学报
儀器儀錶學報
의기의표학보
CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT
2009年
12期
2669-2675
,共7页
张栋%张玉林%李现明%魏强
張棟%張玉林%李現明%魏彊
장동%장옥림%리현명%위강
扫描电化学显微镜%压电工作台%运动定位%PI模型
掃描電化學顯微鏡%壓電工作檯%運動定位%PI模型
소묘전화학현미경%압전공작태%운동정위%PI모형
scanning electrochemistry microscope (SECM)%piezo-stage%dynamic positioning%PI model
为提高扫描电化学显微镜(SECM)微定位系统的运动定位精度,对其压电工作台的数学模型和控制器设计进行了研究.介绍了压电工作台的动态迟滞模型方程和采用Prandtl-Ishlinskii(PI)迟滞算子的动态迟滞模型,并在此基础上设计了压电工作台的复合控制方案.以CHI900B型扫描电化学显微镜的三维压电工作台为实验对象,对动态迟滞模型的具体建模过程进行了阐述,并验证了控制器的性能.在100 V/s和900 V/s两种不同输入电压速率下进行运动定位实验,动态迟滞模型平均误差分别为0.08μm和0.11μm,精度明中显优于压电工作台的线性动态模型和PI迟滞模型.复合控制方案下,系统跟踪±400μm/s任意三角波的平均误差为0.085μm,最大误差为0.105μm;跟踪复频波的平均误差为0.105μm,最大误差为0.115μm.控制效果较好.
為提高掃描電化學顯微鏡(SECM)微定位繫統的運動定位精度,對其壓電工作檯的數學模型和控製器設計進行瞭研究.介紹瞭壓電工作檯的動態遲滯模型方程和採用Prandtl-Ishlinskii(PI)遲滯算子的動態遲滯模型,併在此基礎上設計瞭壓電工作檯的複閤控製方案.以CHI900B型掃描電化學顯微鏡的三維壓電工作檯為實驗對象,對動態遲滯模型的具體建模過程進行瞭闡述,併驗證瞭控製器的性能.在100 V/s和900 V/s兩種不同輸入電壓速率下進行運動定位實驗,動態遲滯模型平均誤差分彆為0.08μm和0.11μm,精度明中顯優于壓電工作檯的線性動態模型和PI遲滯模型.複閤控製方案下,繫統跟蹤±400μm/s任意三角波的平均誤差為0.085μm,最大誤差為0.105μm;跟蹤複頻波的平均誤差為0.105μm,最大誤差為0.115μm.控製效果較好.
위제고소묘전화학현미경(SECM)미정위계통적운동정위정도,대기압전공작태적수학모형화공제기설계진행료연구.개소료압전공작태적동태지체모형방정화채용Prandtl-Ishlinskii(PI)지체산자적동태지체모형,병재차기출상설계료압전공작태적복합공제방안.이CHI900B형소묘전화학현미경적삼유압전공작태위실험대상,대동태지체모형적구체건모과정진행료천술,병험증료공제기적성능.재100 V/s화900 V/s량충불동수입전압속솔하진행운동정위실험,동태지체모형평균오차분별위0.08μm화0.11μm,정도명중현우우압전공작태적선성동태모형화PI지체모형.복합공제방안하,계통근종±400μm/s임의삼각파적평균오차위0.085μm,최대오차위0.105μm;근종복빈파적평균오차위0.105μm,최대오차위0.115μm.공제효과교호.
In order to improve the dynamic positioning precision of scanning electrochemistry microscope (SECM),the mathematic modeling and controller design of the piezo-stage are studied. The dynamic hysteresis model equa-tion of the piezo-stage is introduced. Furthermore, the dynamic hysteresis model based on Prandtl-Ishlinskii (PI) hysteresis operator is given, and a composite control strategy is designed. Experiments on the piezo-stage of CHI900B SECM elaborate the building process of the dynamic hsyteresis model, and the performance of the con-troller is also proved. Experiments with different input voltage rates (100 V/s and 900 V/s) indicate that the mean errors of the dynamic hysteresis model are 0.08 μm and 0.11 μm, respectively, which are better than those of other typical models. The tracking experiments with ±400 μm/s triangle indicate that the mean error and the max error of the compound controller are 0.085 μm and 0.105 μm respectively; and the tracking experiments with multiple sinu-soid indicate that the mean error and the max error are 0.105 μm and 0.115 μm respectively.