中国现代医学杂志
中國現代醫學雜誌
중국현대의학잡지
CHINA JOURNAL OF MODERN MEDICINE
2004年
12期
1-4,7
,共5页
PPAR-α%苯扎贝特,胰岛素抵抗%高脂饮食%β氧化
PPAR-α%苯扎貝特,胰島素牴抗%高脂飲食%β氧化
PPAR-α%분찰패특,이도소저항%고지음식%β양화
PPAR-α%Bezafibrate%insulin resistance%high fat diet%β-oxidation
目的研究过氧化物酶增殖体激活受体α(peroxisome proliferation activated receptor-α,PPAR-α)激动剂对脂肪酸氧化的影响及其改善高脂诱导的胰岛素抵抗(IR)的机制.方法雄性SD大鼠随机分为三组(每组各10只),A组为饱和脂肪酸(1ard)组,B组为不饱和脂肪酸(soy)组,C组为正常对照组.大鼠饲养四周后将高脂饮食组各分为两组,高脂未干预组和苯扎贝特干预组.包头两周后检测空腹血糖、胰岛素和甘油三酯水平,并取出肝脏、肌肉和脂肪组织,检测组织肉碱脂酰转移酶-1(CPT-1)和PPAR-αmR-NA的表达,mRNA表达采用RT-PCR的方法,以β-actin作为内参照.结果肌肉和脂肪CPT-1mRNA表达在高脂未干预组明显低于苯扎贝物干预组和正常对照组,而未干预组间无显著差异.PPAR-αmRNA表达在各组间均无显著性差异.结论高脂饮食可使肌肉和脂肪组织CPT-1mRNA表达减少,而PPAR-αmR-NA激动剂苯扎贝特则可使CPT-1mRNA表达明显增加,肝脏PPAR-αmRNA表达在各组均无明显改变.这说明高脂饮食可能通过抑制脂肪酸β氧化导致组织细胞内脂质蓄积,最终造成IR,而用PPAR-α基因的抑制或促进作用,而是作为配体与PPAR-α受体结合对脂肪酸的氧化起调节作用.
目的研究過氧化物酶增殖體激活受體α(peroxisome proliferation activated receptor-α,PPAR-α)激動劑對脂肪痠氧化的影響及其改善高脂誘導的胰島素牴抗(IR)的機製.方法雄性SD大鼠隨機分為三組(每組各10隻),A組為飽和脂肪痠(1ard)組,B組為不飽和脂肪痠(soy)組,C組為正常對照組.大鼠飼養四週後將高脂飲食組各分為兩組,高脂未榦預組和苯扎貝特榦預組.包頭兩週後檢測空腹血糖、胰島素和甘油三酯水平,併取齣肝髒、肌肉和脂肪組織,檢測組織肉堿脂酰轉移酶-1(CPT-1)和PPAR-αmR-NA的錶達,mRNA錶達採用RT-PCR的方法,以β-actin作為內參照.結果肌肉和脂肪CPT-1mRNA錶達在高脂未榦預組明顯低于苯扎貝物榦預組和正常對照組,而未榦預組間無顯著差異.PPAR-αmRNA錶達在各組間均無顯著性差異.結論高脂飲食可使肌肉和脂肪組織CPT-1mRNA錶達減少,而PPAR-αmR-NA激動劑苯扎貝特則可使CPT-1mRNA錶達明顯增加,肝髒PPAR-αmRNA錶達在各組均無明顯改變.這說明高脂飲食可能通過抑製脂肪痠β氧化導緻組織細胞內脂質蓄積,最終造成IR,而用PPAR-α基因的抑製或促進作用,而是作為配體與PPAR-α受體結閤對脂肪痠的氧化起調節作用.
목적연구과양화물매증식체격활수체α(peroxisome proliferation activated receptor-α,PPAR-α)격동제대지방산양화적영향급기개선고지유도적이도소저항(IR)적궤제.방법웅성SD대서수궤분위삼조(매조각10지),A조위포화지방산(1ard)조,B조위불포화지방산(soy)조,C조위정상대조조.대서사양사주후장고지음식조각분위량조,고지미간예조화분찰패특간예조.포두량주후검측공복혈당、이도소화감유삼지수평,병취출간장、기육화지방조직,검측조직육감지선전이매-1(CPT-1)화PPAR-αmR-NA적표체,mRNA표체채용RT-PCR적방법,이β-actin작위내삼조.결과기육화지방CPT-1mRNA표체재고지미간예조명현저우분찰패물간예조화정상대조조,이미간예조간무현저차이.PPAR-αmRNA표체재각조간균무현저성차이.결론고지음식가사기육화지방조직CPT-1mRNA표체감소,이PPAR-αmR-NA격동제분찰패특칙가사CPT-1mRNA표체명현증가,간장PPAR-αmRNA표체재각조균무명현개변.저설명고지음식가능통과억제지방산β양화도치조직세포내지질축적,최종조성IR,이용PPAR-α기인적억제혹촉진작용,이시작위배체여PPAR-α수체결합대지방산적양화기조절작용.
Objective: To investigate the effect of peroxisome proliferation activated receptor-α(PPAR-α) activator on the fatty acid oxidation and the molecular mechanisms to improve high fat induced insulin resistance. Methods: Male SD rata were divided into 3 groups, group A (n=10): rats fed with saturated fatty acid,group B (n=10): rata fed with unsaturated fatty acid, group C (n=10): control rats. At the end of 4th weeks,the first 2 groups were divided into two groups: rats with or without Bezafibrate treatment. After another two weeks, blood samples were taken to detect fasting plasma glucose (FPG), fasting plasma insulin (FIN) and triglyceride (TG). The muscle, hepatic liver and adipose tissues were taken out from all the rats to assay the expression of PPAR-αand musle-type carnitine palmitoyltranferanse-1(CPT-1) mRNA by RT-PCR. Results:The expression of CPT-1 mRNA of musle and adipose tissues in no Bezafibrate treatment groups was lower than the Bezafibrate treatment groups and control but the expression of PPAR-αmRNA had no significant difference among all groups. Conclusions: The expression of CPT-1 mRNA is significantly decreased in high fat fed rats. PPAR-α activator bezafibrate can increase the expression of CPT-1. PPAR-α mRNA has no change in every group, suggesting that high fatty acid can suppress fatty acid β-oxidation and cause lipid accumulation and insulin resistance. PPAR-α activator can attenuate insulin resistance by increase fatty acid β-oxidation. This effect is not through suppress or promote the transcription of PPAR-α but as ligand to regulate fatty acid oxidation.