原子核物理评论
原子覈物理評論
원자핵물리평론
Nuclear Physics Review
2007年
1期
80-84
,共5页
脉冲堆%临界核系统%有限裂变链
脈遲堆%臨界覈繫統%有限裂變鏈
맥충퇴%림계핵계통%유한렬변련
pulse reactor%critical nuclear system%finite fission chain
讨论了在一个增殖系统引发一个持续裂变链所需要的平均中子数.在点堆模型基础上,考虑了在t0时刻系统引入一个源中子,在t时刻产生n个中子的概率ν(n,t0,t),推导了概率生成函数G(z;t0,t)所满足的偏微分方程,并得到了近似解.用近似解计算了Godiva-Ⅱ脉冲堆的有限裂变链长数学期望值,有限裂变链期望值反比于脉冲堆的反应性.
討論瞭在一箇增殖繫統引髮一箇持續裂變鏈所需要的平均中子數.在點堆模型基礎上,攷慮瞭在t0時刻繫統引入一箇源中子,在t時刻產生n箇中子的概率ν(n,t0,t),推導瞭概率生成函數G(z;t0,t)所滿足的偏微分方程,併得到瞭近似解.用近似解計算瞭Godiva-Ⅱ脈遲堆的有限裂變鏈長數學期望值,有限裂變鏈期望值反比于脈遲堆的反應性.
토론료재일개증식계통인발일개지속렬변련소수요적평균중자수.재점퇴모형기출상,고필료재t0시각계통인입일개원중자,재t시각산생n개중자적개솔ν(n,t0,t),추도료개솔생성함수G(z;t0,t)소만족적편미분방정,병득도료근사해.용근사해계산료Godiva-Ⅱ맥충퇴적유한렬변련장수학기망치,유한렬변련기망치반비우맥충퇴적반응성.
The average neutron population necessary for sponsoring a persistent fission chain in a multiplying system, is discussed. In the point reactor model, the probability functionν(n,t0,t) of a source neutron at time t0 leading to n neutrons at time t is dealt with. The non-linear partial differential equation for the probability generating function G(z;t0,t) is derived. By solving the equation, we have obtained an approximate analytic solution for a slightly prompt supercritical system. For the pulse reactor Godiva-Ⅱ, the mean value of finite fission chain lengths is estimated in this work and shows that the estimated value is reasonable for the experimental analysis.