纳米技术与精密工程
納米技術與精密工程
납미기술여정밀공정
NANOTECHNOLOGY AND PRECISION ENGINEERING
2009年
2期
95-101
,共7页
王玉林%张胜男%米耀荣%万怡灶%林诗慧%何芳%黄远
王玉林%張勝男%米耀榮%萬怡竈%林詩慧%何芳%黃遠
왕옥림%장성남%미요영%만이조%림시혜%하방%황원
细菌纤维素%羟基磷灰石%纳米复合材料%生物矿化%热分析
細菌纖維素%羥基燐灰石%納米複閤材料%生物礦化%熱分析
세균섬유소%간기린회석%납미복합재료%생물광화%열분석
bacterial cellulose%hydroxyaoatite%nanocomposite%biomineralization%thermal analysis
通过仿生途径制备了模拟天然骨成分的羟基磷灰石/细菌纤维素(hydroxyapatite/bacterial cellulose,HAp/BC)纳米复合材料,使用TGA(thermo-gravimetric analysis)、DSC(differential scanning calorimetry)和DMA(dynamic mechanical analysis)测试方法对复合材料进行了热力学表征,以此来了解复合材料的成分组成、热稳定性和热力学行为.实验结果表明,纳米复合材料的成分与天然骨相似,并且热稳定性与纯BC相比有所提高;纳米复合材料在热分解时存在复杂的吸热放热现象;由于HAp的加入,与BC相比,复合材料的玻璃化转变温度向高温区域移动.
通過倣生途徑製備瞭模擬天然骨成分的羥基燐灰石/細菌纖維素(hydroxyapatite/bacterial cellulose,HAp/BC)納米複閤材料,使用TGA(thermo-gravimetric analysis)、DSC(differential scanning calorimetry)和DMA(dynamic mechanical analysis)測試方法對複閤材料進行瞭熱力學錶徵,以此來瞭解複閤材料的成分組成、熱穩定性和熱力學行為.實驗結果錶明,納米複閤材料的成分與天然骨相似,併且熱穩定性與純BC相比有所提高;納米複閤材料在熱分解時存在複雜的吸熱放熱現象;由于HAp的加入,與BC相比,複閤材料的玻璃化轉變溫度嚮高溫區域移動.
통과방생도경제비료모의천연골성분적간기린회석/세균섬유소(hydroxyapatite/bacterial cellulose,HAp/BC)납미복합재료,사용TGA(thermo-gravimetric analysis)、DSC(differential scanning calorimetry)화DMA(dynamic mechanical analysis)측시방법대복합재료진행료열역학표정,이차래료해복합재료적성분조성、열은정성화열역학행위.실험결과표명,납미복합재료적성분여천연골상사,병차열은정성여순BC상비유소제고;납미복합재료재열분해시존재복잡적흡열방열현상;유우HAp적가입,여BC상비,복합재료적파리화전변온도향고온구역이동.
Hydroxyapatite/bacterial cellulose (HAp/BC) nanocomposites, which mimic the composition of natural bone, were prepared via a biomimetic route. In this study, thermal analysis of these HAp/BC nanocomposites was conducted to investigate the compositions, thermal stability, and thermo-mechanical behaviors of HAp/BC nanocomposites, using thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). TGA results reveal that the composition of these uanocomposites is similar to natural bone and their thermal stability is improved in the presence of hydroxyapatite. Discrepancy of thermal behaviors between BC and HAp/BC nanocomposites is also observed from DSC results. The glass transition temperature, obtained from the DMA curves of the nanocomposites is increased by the incorporation of hydroxyapatite.