南京航空航天大学学报
南京航空航天大學學報
남경항공항천대학학보
JOURNAL OF NANJING UNIVERSITY OF AERONAUTICS & ASTRONAUTICS
2010年
2期
191-197
,共7页
时域多分辨方法%Daubechies尺度函数%色散特性%电磁散射%连接边界
時域多分辨方法%Daubechies呎度函數%色散特性%電磁散射%連接邊界
시역다분변방법%Daubechies척도함수%색산특성%전자산사%련접변계
muhiresolution time-domain (MRTD) method%Daubeehies' scaling function%dispersion property%electromagnetic scattering%connecting boundary
将基于Daubechies尺度函数的时域多分辨(Multiresolution time-domain,MRTD)方法应用于三维目标的电磁散射和雷达目标特性分析中,并对其Courant稳定性条件和色散特性进行了分析.在入射波引入方面,提出应用总场/散射场技术,在连接边界周围定义一些"修正区域",并推导出一系列"修正区域"内的迭代公式,把入射场作为"连接边界条件"引入到计算区域.理论分析和实验结果表明,基于Daubechies尺度函数的MRTD方法和入射波引入方法是有效的,且与传统的FDTD方法相比,MRTD方法在保持计算精度的前提下能够节省计算资源.
將基于Daubechies呎度函數的時域多分辨(Multiresolution time-domain,MRTD)方法應用于三維目標的電磁散射和雷達目標特性分析中,併對其Courant穩定性條件和色散特性進行瞭分析.在入射波引入方麵,提齣應用總場/散射場技術,在連接邊界週圍定義一些"脩正區域",併推導齣一繫列"脩正區域"內的迭代公式,把入射場作為"連接邊界條件"引入到計算區域.理論分析和實驗結果錶明,基于Daubechies呎度函數的MRTD方法和入射波引入方法是有效的,且與傳統的FDTD方法相比,MRTD方法在保持計算精度的前提下能夠節省計算資源.
장기우Daubechies척도함수적시역다분변(Multiresolution time-domain,MRTD)방법응용우삼유목표적전자산사화뢰체목표특성분석중,병대기Courant은정성조건화색산특성진행료분석.재입사파인입방면,제출응용총장/산사장기술,재련접변계주위정의일사"수정구역",병추도출일계렬"수정구역"내적질대공식,파입사장작위"련접변계조건"인입도계산구역.이론분석화실험결과표명,기우Daubechies척도함수적MRTD방법화입사파인입방법시유효적,차여전통적FDTD방법상비,MRTD방법재보지계산정도적전제하능구절성계산자원.
A new multiresolution time-domain (MRTD) scheme based on Daubeehies' compactly sup-ported sealing function is used to analyze electromagnetic scattering and radar target properties of three-dimensional targets. And its Courant stability condition and the dispersion property are studied. To introduce the incident wave, the total-field/scattered-field (TF/SF) technique is applied. Some "correction regions" around the connecting boundary are defined. Moreover, a series of the iterative formula in "correction regions" is derived to introduce the incident fields into computational regions as "connecting boundary condition". Theoretical analyses and experimental results show that the MRTD method based on Daubeehies' sealing function and the proposed method of introducing incident wave are effective. Compared with the traditional FDTD method, the MRTD method can save considerable computational resources without loss of computational accuracy.