计算机应用
計算機應用
계산궤응용
COMPUTER APPLICATION
2009年
z2期
382-384
,共3页
7色印刷%Lab颜色空间%K均值聚类%马尔可夫模型%滤波算法
7色印刷%Lab顏色空間%K均值聚類%馬爾可伕模型%濾波算法
7색인쇄%Lab안색공간%K균치취류%마이가부모형%려파산법
7-color printing%Lab color space%K-means clustering%Markov model%filtering algorithm
研究一种新的基于改进的K均值聚类的高保真彩色印刷分色方法,算法首先将彩色图像通过非线性变换,转换到Lab颜色空间,再利用改进的K均值聚类算法进行色彩学习,最后经过改进的误差分散求取结果.算法优点是利用图像的空间相关信息,使分色结果得到局部优化;同时,由于阈值的引入,可以很好地控制分类精度;最后,通过对误差分散算法的改进,同时保证了分色图像色彩的连续性与差异性.
研究一種新的基于改進的K均值聚類的高保真綵色印刷分色方法,算法首先將綵色圖像通過非線性變換,轉換到Lab顏色空間,再利用改進的K均值聚類算法進行色綵學習,最後經過改進的誤差分散求取結果.算法優點是利用圖像的空間相關信息,使分色結果得到跼部優化;同時,由于閾值的引入,可以很好地控製分類精度;最後,通過對誤差分散算法的改進,同時保證瞭分色圖像色綵的連續性與差異性.
연구일충신적기우개진적K균치취류적고보진채색인쇄분색방법,산법수선장채색도상통과비선성변환,전환도Lab안색공간,재이용개진적K균치취류산법진행색채학습,최후경과개진적오차분산구취결과.산법우점시이용도상적공간상관신식,사분색결과득도국부우화;동시,유우역치적인입,가이흔호지공제분류정도;최후,통과대오차분산산법적개진,동시보증료분색도상색채적련속성여차이성.
A new modified K-means clustering-based high-fidelity color separation method was presented in this paper. In this algorithm, the authors transformed the image pixels from RGB color space to Lab color space by a nonlinear transformation, then after studying the samples of color information using modified K-means clustering and modified diffusing error, the authors made segmentation. The characteristic of this algorithm is using the spatial interrelated information, which makes the result of local optimization. At the same time, because of the introduction of the threshold, the authors can well control the classification accuracy. Finally, the continuity and color difference of color images can be ensured through modified error diffusion algorithm.