仪器仪表学报
儀器儀錶學報
의기의표학보
CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT
2010年
2期
287-292
,共6页
谐波分析%Kaiser窗%插值FFT%频谱泄漏%双谱线
諧波分析%Kaiser窗%插值FFT%頻譜洩漏%雙譜線
해파분석%Kaiser창%삽치FFT%빈보설루%쌍보선
harmonic analysis%Kaiser window%interpolation FFT%spectral leakage%double spectrum line
为进一步减少加窗插值FFT的频谱泄漏和栅栏效应,提出了基于Kaiser窗的双谱线插值FFT的电力谐波分析方法,运用多项式拟合求出了实用的插值修正算式,推导了信号基波与各次谐波频率、幅值、初相角的计算式.仿真结果表明,Kaiser窗函数设计实现灵活、抑制频谱泄漏效果好,基于Kaiser窗的双谱线插值FFT方法能有效克服基波频率波动与白噪声对谐波分析的影响,在非整数周期截断条件下,对含21次谐波信号的频率计算相对误差仅为1.4×10%,幅值计算相对误差0.002%,初相位计算相对误差0.000 1%,三相谐波电能计量应用实践证明了该方法的正确性.
為進一步減少加窗插值FFT的頻譜洩漏和柵欄效應,提齣瞭基于Kaiser窗的雙譜線插值FFT的電力諧波分析方法,運用多項式擬閤求齣瞭實用的插值脩正算式,推導瞭信號基波與各次諧波頻率、幅值、初相角的計算式.倣真結果錶明,Kaiser窗函數設計實現靈活、抑製頻譜洩漏效果好,基于Kaiser窗的雙譜線插值FFT方法能有效剋服基波頻率波動與白譟聲對諧波分析的影響,在非整數週期截斷條件下,對含21次諧波信號的頻率計算相對誤差僅為1.4×10%,幅值計算相對誤差0.002%,初相位計算相對誤差0.000 1%,三相諧波電能計量應用實踐證明瞭該方法的正確性.
위진일보감소가창삽치FFT적빈보설루화책란효응,제출료기우Kaiser창적쌍보선삽치FFT적전력해파분석방법,운용다항식의합구출료실용적삽치수정산식,추도료신호기파여각차해파빈솔、폭치、초상각적계산식.방진결과표명,Kaiser창함수설계실현령활、억제빈보설루효과호,기우Kaiser창적쌍보선삽치FFT방법능유효극복기파빈솔파동여백조성대해파분석적영향,재비정수주기절단조건하,대함21차해파신호적빈솔계산상대오차부위1.4×10%,폭치계산상대오차0.002%,초상위계산상대오차0.000 1%,삼상해파전능계량응용실천증명료해방법적정학성.
To further reduce the errors caused by spectral leakage and picket fence effect, an approach for electrical harmonic analysis based on Kaiser window double spectrum line interpolation FFT is proposed in this paper. The applicable rectification formulas of the interpolation are obtained by using polynomial curve fitting. The arithmetic expressions of the fundamental and harmonic frequencies, amplitudes and initial phases are deduced. Simulation results show that Kaiser window function can be designed and realized easily and restrain the spectral leakage well, the influences caused by fundamental frequency fluctuation and white noise on harmonic analysis are all restrained by using the presented approach, and under non-integral period truncation conditions, the relative errors of frequency calculation for 21 order harmonics are no more than 1.4×10~(-9)%, the relative errors of amplitude calculation are no more than 0.002%, and those of phase calculation are no more than 0.000 1%. Three-phase harmonic energy measurement application proves the validity of the presented approach.