纳米技术与精密工程
納米技術與精密工程
납미기술여정밀공정
NANOTECHNOLOGY AND PRECISION ENGINEERING
2011年
6期
539-544
,共6页
快速刀具伺服系统%自由曲面%麦克斯韦力%电磁场分析%高频响应
快速刀具伺服繫統%自由麯麵%麥剋斯韋力%電磁場分析%高頻響應
쾌속도구사복계통%자유곡면%맥극사위력%전자장분석%고빈향응
fast tool servo system%free-form surface%Maxwell force%magnetic field analysis%high frequency response
基于快速刀具伺服(FTS)系统的单点金刚石车削是加工光学自由曲面的重要方法之一.传统的直线刀具伺服系统都具有频率响应低的问题,严重限制了可以加工自由表面的复杂程度.文中介绍了麦克斯韦力驱动的快速刀具伺服系统的设计,电机采用永磁体偏置模型实现线性驱动,根据磁路设计原理推导了电机的运动公式,利用有限元分析(FEA)的方法分析了电机模型在高频信号驱动时的受力曲线、涡流损耗的大小和分布情况.根据分析的结果设计了电机的驱动系统,并进行了开环正弦驱动实验和电极频率响应曲线的测试,最终利用PID算法实现了FTS系统的闭环控制.基于麦克斯韦力驱动的FTS系统的最佳驱动频率应小于40 kHz,系统目前行程可以达到15.75 μm,最大的频率响应可以达到100kHz,系统可以跟踪500 Hz正弦波运动.
基于快速刀具伺服(FTS)繫統的單點金剛石車削是加工光學自由麯麵的重要方法之一.傳統的直線刀具伺服繫統都具有頻率響應低的問題,嚴重限製瞭可以加工自由錶麵的複雜程度.文中介紹瞭麥剋斯韋力驅動的快速刀具伺服繫統的設計,電機採用永磁體偏置模型實現線性驅動,根據磁路設計原理推導瞭電機的運動公式,利用有限元分析(FEA)的方法分析瞭電機模型在高頻信號驅動時的受力麯線、渦流損耗的大小和分佈情況.根據分析的結果設計瞭電機的驅動繫統,併進行瞭開環正絃驅動實驗和電極頻率響應麯線的測試,最終利用PID算法實現瞭FTS繫統的閉環控製.基于麥剋斯韋力驅動的FTS繫統的最佳驅動頻率應小于40 kHz,繫統目前行程可以達到15.75 μm,最大的頻率響應可以達到100kHz,繫統可以跟蹤500 Hz正絃波運動.
기우쾌속도구사복(FTS)계통적단점금강석차삭시가공광학자유곡면적중요방법지일.전통적직선도구사복계통도구유빈솔향응저적문제,엄중한제료가이가공자유표면적복잡정도.문중개소료맥극사위력구동적쾌속도구사복계통적설계,전궤채용영자체편치모형실현선성구동,근거자로설계원리추도료전궤적운동공식,이용유한원분석(FEA)적방법분석료전궤모형재고빈신호구동시적수력곡선、와류손모적대소화분포정황.근거분석적결과설계료전궤적구동계통,병진행료개배정현구동실험화전겁빈솔향응곡선적측시,최종이용PID산법실현료FTS계통적폐배공제.기우맥극사위력구동적FTS계통적최가구동빈솔응소우40 kHz,계통목전행정가이체도15.75 μm,최대적빈솔향응가이체도100kHz,계통가이근종500 Hz정현파운동.
Single-point turning based on fast tool servo (FTS) system is one of the important approaches to machining optical free-form surfaces.The conventional linear tool servos have the problem of low frequency-response,which limits the complexity of the surfaces to be machined.This paper presents the design of an FTS system,which is driven by Maxwell force and modelled by using the permanent magnet biasing methods to realize linear operation.The moving equation of the FTS was deduced according to magnetic circuit design principles.The magnetic distribution,eddy-current loss and the driving force curves at high frequency were simulated and calculated based on the finite element analysis (FEA) method.The FTS system was designed according to the analytical results.The sinusoid driving experiment was conducted and the frequency-response curve of the FTS was tested.The FTS system was closed-loop controlled by using PID algorithm.The proper driving frequency of the FTS should be under 40 kHz.The system had the stroke of 15.75 μm with the maximum frequency of 100 kHz.The closed system had the ability to track 500 Hz sinusoid wave movement.