系统工程与电子技术
繫統工程與電子技術
계통공정여전자기술
SYSTEMS ENGINEERING AND ELECTRONICS
2010年
3期
609-613
,共5页
图像融合%合成孔径雷达%多阈值分割%无下采样Contourlet变换%区域均值比
圖像融閤%閤成孔徑雷達%多閾值分割%無下採樣Contourlet變換%區域均值比
도상융합%합성공경뢰체%다역치분할%무하채양Contourlet변환%구역균치비
image fusion%synthetic aperture radar%multi-level threshold segmentation%nonsubsampled Contourlet transform%ratio of region mean
提出了一种基于多阈值分割和无下采样Contourlet变换(nonsubsampled Contourlet transform, NSCT)的SAR与全色图像融合算法.首先对降斑SAR图像作多阈值分割,并定义了区域均值比量测算子将SAR图像进行区域划分;然后采用NSCT对降斑SAR图像和全色图像进行多尺度、多方向分解,分解后的低频部分根据区域均值比量测算子进行区域融合,高频部分则采用区域与窗口邻域相结合的融合策略;最后对融合系数进行重构得到融合图像.实验结果表明,该算法的融合图像既可保持全色图像的空间分辨率,又可有效获取SAR图像的目标信息,融合效果优于小波变换法以及基于像素的NSCT法.
提齣瞭一種基于多閾值分割和無下採樣Contourlet變換(nonsubsampled Contourlet transform, NSCT)的SAR與全色圖像融閤算法.首先對降斑SAR圖像作多閾值分割,併定義瞭區域均值比量測算子將SAR圖像進行區域劃分;然後採用NSCT對降斑SAR圖像和全色圖像進行多呎度、多方嚮分解,分解後的低頻部分根據區域均值比量測算子進行區域融閤,高頻部分則採用區域與窗口鄰域相結閤的融閤策略;最後對融閤繫數進行重構得到融閤圖像.實驗結果錶明,該算法的融閤圖像既可保持全色圖像的空間分辨率,又可有效穫取SAR圖像的目標信息,融閤效果優于小波變換法以及基于像素的NSCT法.
제출료일충기우다역치분할화무하채양Contourlet변환(nonsubsampled Contourlet transform, NSCT)적SAR여전색도상융합산법.수선대강반SAR도상작다역치분할,병정의료구역균치비량측산자장SAR도상진행구역화분;연후채용NSCT대강반SAR도상화전색도상진행다척도、다방향분해,분해후적저빈부분근거구역균치비량측산자진행구역융합,고빈부분칙채용구역여창구린역상결합적융합책략;최후대융합계수진행중구득도융합도상.실험결과표명,해산법적융합도상기가보지전색도상적공간분변솔,우가유효획취SAR도상적목표신식,융합효과우우소파변환법이급기우상소적NSCT법.
An fusion algorithm for synthetic aperture radar (SAR) and panchromatic images based on multi-level threshold segmentation and the nonsubsampled Contourlet transform(NSCT) is proposed. Firstly, multi-level threshold segmentation is done for the despeckle SAR image, and the measurement named ratio of region mean(RRM) is presented to divide the SAR image into several regions. Then the NSCT is performed on the despeckle SAR image and the panchromatic image at different scales and directions. The low-frequency coefficients are fused with the region-based fusion scheme according to the RRM, and the high-frequency coefficients are fused with the windows-based rules and region-based rules. Finally the fused coefficients are reconstructed to obtain the fused image. Experimental results show that the fused image can not only preserves the spatial resolution of the panchromatic image but also effectively join the target information of the SAR image. The algorithm performs significantly better than the wavelet transform and the pixel-based NSCT.