新疆大学学报(自然科学版)
新疆大學學報(自然科學版)
신강대학학보(자연과학판)
XINJIANG UNIVERSITY JOURNAL(NATURAL SCIENCE EDITION)
2011年
3期
283-288
,共6页
恒化器模型%年龄结构%全局渐近稳定%持久%阈值
恆化器模型%年齡結構%全跼漸近穩定%持久%閾值
항화기모형%년령결구%전국점근은정%지구%역치
Chemostat model%Stage structure%Globally asymptotically stable%Permanence%Threshold value
研究了一个ω周期环境的具有年龄结构的恒化器模型,阈值R0被一个特殊线性方程的基解矩阵所定义,全局动力学被阈值R0决定,即:如果R0<l种群灭绝周期解全局渐近稳定;如果R0>1则种群持久.
研究瞭一箇ω週期環境的具有年齡結構的恆化器模型,閾值R0被一箇特殊線性方程的基解矩陣所定義,全跼動力學被閾值R0決定,即:如果R0<l種群滅絕週期解全跼漸近穩定;如果R0>1則種群持久.
연구료일개ω주기배경적구유년령결구적항화기모형,역치R0피일개특수선성방정적기해구진소정의,전국동역학피역치R0결정,즉:여과R0<l충군멸절주기해전국점근은정;여과R0>1칙충군지구.
In this paper,we study a single-species chemostat model in an ω-periodic environment with stage structure.The threshold value R0 is defined by means of the fundamental solution matrix of a special linear equation.The global dynamics are determined by using threshold value R0.That is,if R0 < 1 the population eradication periodic solution is globally asymptotically stable and if R0 > 1 then the population is permanent.