数学进展
數學進展
수학진전
ADVANCES IN MATHEMATICS
2005年
2期
133-144
,共12页
渐近本质唯一性%目标方法%Parisi猜想%随机配置
漸近本質唯一性%目標方法%Parisi猜想%隨機配置
점근본질유일성%목표방법%Parisi시상%수궤배치
假设(ti,j)1≤i,j≤n是一个n×n的具有独立同分布,参数为1的指数费用矩阵.考虑最优配置费用Aen=:minπ∑ni=1ti,π(i),其中π=(π(1),…,π(n))为1,2,……,n的排列.本文目的是对最近关于平均最优配置费用EAen的研究进展作些评论,特别关注Aldous的目标方法和局部弱收敛性,以及著名的Parisi猜想和证明.文章结尾包含了一些尚未解决的问题,值得进一步研究.
假設(ti,j)1≤i,j≤n是一箇n×n的具有獨立同分佈,參數為1的指數費用矩陣.攷慮最優配置費用Aen=:minπ∑ni=1ti,π(i),其中π=(π(1),…,π(n))為1,2,……,n的排列.本文目的是對最近關于平均最優配置費用EAen的研究進展作些評論,特彆關註Aldous的目標方法和跼部弱收斂性,以及著名的Parisi猜想和證明.文章結尾包含瞭一些尚未解決的問題,值得進一步研究.
가설(ti,j)1≤i,j≤n시일개n×n적구유독립동분포,삼수위1적지수비용구진.고필최우배치비용Aen=:minπ∑ni=1ti,π(i),기중π=(π(1),…,π(n))위1,2,……,n적배렬.본문목적시대최근관우평균최우배치비용EAen적연구진전작사평론,특별관주Aldous적목표방법화국부약수렴성,이급저명적Parisi시상화증명.문장결미포함료일사상미해결적문제,치득진일보연구.