计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2007年
1期
69-73
,共5页
陆文聪%殷文宇%李国正%刘太昂
陸文聰%慇文宇%李國正%劉太昂
륙문총%은문우%리국정%류태앙
定量结构性质关系%支持向量回归%除草活性
定量結構性質關繫%支持嚮量迴歸%除草活性
정량결구성질관계%지지향량회귀%제초활성
quantitative structure-property relationship%support vector regression%herbicidal activity
采用支持向量回归方法研究了1,4,2-二氮磷杂环戊-5-(硫)酮类化合物除草活性的QSAR.基于留一法交叉验证的结果,比较了支持向量机回归(SVR)与几种常用建模方法对于该类化合物除草活性的预测精度.研究表明:所建SVR模型的精度高于逆传播人工神经网络(BPANN)、多元线性回归和偏最小二乘(PLS)所得结果.
採用支持嚮量迴歸方法研究瞭1,4,2-二氮燐雜環戊-5-(硫)酮類化閤物除草活性的QSAR.基于留一法交扠驗證的結果,比較瞭支持嚮量機迴歸(SVR)與幾種常用建模方法對于該類化閤物除草活性的預測精度.研究錶明:所建SVR模型的精度高于逆傳播人工神經網絡(BPANN)、多元線性迴歸和偏最小二乘(PLS)所得結果.
채용지지향량회귀방법연구료1,4,2-이담린잡배무-5-(류)동류화합물제초활성적QSAR.기우류일법교차험증적결과,비교료지지향량궤회귀(SVR)여궤충상용건모방법대우해류화합물제초활성적예측정도.연구표명:소건SVR모형적정도고우역전파인공신경망락(BPANN)、다원선성회귀화편최소이승(PLS)소득결과.
In the present work, QSPR of 1, 4, 2-diazaphospholidin-5-(thi) one-2-oxides with 31 compounds was analyzed by using support vector regression (SVR). In a benchmark test, the support vector regression (SVR) models for the activity index (D) were compared to several techniques of machine learning widely used in the field. The prediction accuracies of models were discussed on the basis of the leave-one-out cross-validation (LOOCV). The results showed that the prediction accuracy of SVR model was higher than those of back propagation artificial neural network (BPANN), multiple linear regression (MLR) regression and partial least squares (PLS) methods.