稀有金属
稀有金屬
희유금속
CHINESE JOURNAL OF RARE METALS
2010年
2期
250-256
,共7页
柳旭%迟燕华%庄稼%吴杰
柳旭%遲燕華%莊稼%吳傑
류욱%지연화%장가%오걸
水溶性ZnO量子点%牛血清白蛋白%氨基酸%荧光光谱
水溶性ZnO量子點%牛血清白蛋白%氨基痠%熒光光譜
수용성ZnO양자점%우혈청백단백%안기산%형광광보
water soluble ZnO quantum dots%bovine serum albumin%amino acid%fluorescence spectroscopy
采用荧光光谱法和紫外可见吸收光谱法系统的研究了水溶性ZnO量子点(QDS)的光学性能及其与不同的生物大小分子的作用.研究发现,QDS除了具有普通量子点所具有的优点外,它还具有两个窄的荧光特征发射峰(分别在353和517 nm),并与牛血清白蛋白(BSA)、L-苯丙氨酸(L-Phe)、DL-色氨酸(DL-Try)、L-组氨酸(L-His)等生物分子之间均能形成配合物.荧光光谱显示,L-His对QDS在517 nm处的荧光有猝灭作用;而BSA则对QDS在353 nm处的荧光具有显著的荧光增敏作用,并使QDS的发射峰发生红移(从353 illn移至359 nm).QDS对L-Phe,DL-Try及BSA的荧光产生不同程度的猝灭作用,并且使DL-Try的荧光特征发射峰发生红移(从350 nm移至359 nm),而使BSA的荧光特征发射峰发生紫移(从336nm移至326 nm).其中,QDS对BSA分子的猝灭机制为静态猝灭.应用生物大小分子与QDS作用后的紫外可见吸收光谱,进一步证实了它们与量子点的结合.QDS与生物大小分子的作用表明,QDS可以对这几种生物分子进行跟踪标记,它通过和组成BSA的L-Phe,DL-Try,L-His等氨基酸小分子作用而与BSA作用的.
採用熒光光譜法和紫外可見吸收光譜法繫統的研究瞭水溶性ZnO量子點(QDS)的光學性能及其與不同的生物大小分子的作用.研究髮現,QDS除瞭具有普通量子點所具有的優點外,它還具有兩箇窄的熒光特徵髮射峰(分彆在353和517 nm),併與牛血清白蛋白(BSA)、L-苯丙氨痠(L-Phe)、DL-色氨痠(DL-Try)、L-組氨痠(L-His)等生物分子之間均能形成配閤物.熒光光譜顯示,L-His對QDS在517 nm處的熒光有猝滅作用;而BSA則對QDS在353 nm處的熒光具有顯著的熒光增敏作用,併使QDS的髮射峰髮生紅移(從353 illn移至359 nm).QDS對L-Phe,DL-Try及BSA的熒光產生不同程度的猝滅作用,併且使DL-Try的熒光特徵髮射峰髮生紅移(從350 nm移至359 nm),而使BSA的熒光特徵髮射峰髮生紫移(從336nm移至326 nm).其中,QDS對BSA分子的猝滅機製為靜態猝滅.應用生物大小分子與QDS作用後的紫外可見吸收光譜,進一步證實瞭它們與量子點的結閤.QDS與生物大小分子的作用錶明,QDS可以對這幾種生物分子進行跟蹤標記,它通過和組成BSA的L-Phe,DL-Try,L-His等氨基痠小分子作用而與BSA作用的.
채용형광광보법화자외가견흡수광보법계통적연구료수용성ZnO양자점(QDS)적광학성능급기여불동적생물대소분자적작용.연구발현,QDS제료구유보통양자점소구유적우점외,타환구유량개착적형광특정발사봉(분별재353화517 nm),병여우혈청백단백(BSA)、L-분병안산(L-Phe)、DL-색안산(DL-Try)、L-조안산(L-His)등생물분자지간균능형성배합물.형광광보현시,L-His대QDS재517 nm처적형광유졸멸작용;이BSA칙대QDS재353 nm처적형광구유현저적형광증민작용,병사QDS적발사봉발생홍이(종353 illn이지359 nm).QDS대L-Phe,DL-Try급BSA적형광산생불동정도적졸멸작용,병차사DL-Try적형광특정발사봉발생홍이(종350 nm이지359 nm),이사BSA적형광특정발사봉발생자이(종336nm이지326 nm).기중,QDS대BSA분자적졸멸궤제위정태졸멸.응용생물대소분자여QDS작용후적자외가견흡수광보,진일보증실료타문여양자점적결합.QDS여생물대소분자적작용표명,QDS가이대저궤충생물분자진행근종표기,타통과화조성BSA적L-Phe,DL-Try,L-His등안기산소분자작용이여BSA작용적.
Characteristics of luminescence spectroscopy of water soluble ZnO quantum dots (QDS) and its interaction with biological molecules were investigated by fluorescence spectroscopy and absorptiometry. It is suggested that except for the advantages of common quantum dots, the water soluble ZnO quantum dots had two narrow fluorescence emission peaks(at 353 and 517 nm respectivly) and it could form complexes with bovine serum albumin, L-phenylalanine( L-phe), DL-tryptophan (DL-Try) and L-histidene(L-his), re-spectively. The fluorescence spectroscopy results showed that the fluorescence peak at 517 nm of QDS was quenched by L-his while the fhoresence peak at 353 nm of QDS enhanced and red shifted (from 353 nm to 359 nm) in the presence of BSA. The fluorescence in-tensity of L-phe, DL-try and BSA were quenched in different degrees by gradually added QDS, meanwhile the inherent fluorescence peak of DL-try red-shifted ( from 350 nm to 359 nm) and the inherent fluorescence peak of BSA blue-shifted ( from 336 nm to 326 nm), the quenching mechanism was mainly static quenching for BSA. The UV spectrum of the interaction between biological molecules and QDS further revealed their combination. The interaction between QDS and biological molecules showed that QDS could label these molecules and the QDS interacted with bovine serum albumin by interacting with its compositions of small amino acids, such as L-Phe, DL-Try and L-His.