电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2012年
3期
15-21
,共7页
方璐%徐先勇%罗安%方厚辉%李琪%吴敬兵
方璐%徐先勇%囉安%方厚輝%李琪%吳敬兵
방로%서선용%라안%방후휘%리기%오경병
特高压交流%调频式谐振试验电源%最佳载波比%虚拟电阻%特定次消谐法
特高壓交流%調頻式諧振試驗電源%最佳載波比%虛擬電阻%特定次消諧法
특고압교류%조빈식해진시험전원%최가재파비%허의전조%특정차소해법
UHVAC%frequency-tuned resonant test powersupply%best carrier ratio%virtual resistance%specificsub-harmonic elimination
摘要:针对新型调频式谐振特高压试验电源(UHV frequency tuned resonant test powersupply,UHV-FTRTPS)输出信号频率较宽,不易获得最佳波形这一问题,提出了一种新的特高压试验电源方案。在167-300Hz高频率段,采用同步正弦脉宽调制(sinusoidal pulse.widthmodulation,SPWM),把载波比Ⅳ的数值选择与输出滤波器本身结构相结合,得到合理的最佳Ⅳ值和滤波器最小视在功率。同时,在30-167Hz低频率段,采用特定次谐波消除方法在线计算各开关角度,消弱低次谐波,把低次谐波转移到高次谐波,以利于输出滤波器滤除。最后,在输出滤波器电容上串联1个虚拟电阻,在不增加硬件及不改变输出滤波器结构的基础上,从软件控制方法上来增强其阻尼性,使之更好地滤除高次谐波。仿真及试验结果验证了该方案的正确性和有效性,对新型特高压试验电源的工程应用及产品化具有一定的指导和借鉴作用。
摘要:針對新型調頻式諧振特高壓試驗電源(UHV frequency tuned resonant test powersupply,UHV-FTRTPS)輸齣信號頻率較寬,不易穫得最佳波形這一問題,提齣瞭一種新的特高壓試驗電源方案。在167-300Hz高頻率段,採用同步正絃脈寬調製(sinusoidal pulse.widthmodulation,SPWM),把載波比Ⅳ的數值選擇與輸齣濾波器本身結構相結閤,得到閤理的最佳Ⅳ值和濾波器最小視在功率。同時,在30-167Hz低頻率段,採用特定次諧波消除方法在線計算各開關角度,消弱低次諧波,把低次諧波轉移到高次諧波,以利于輸齣濾波器濾除。最後,在輸齣濾波器電容上串聯1箇虛擬電阻,在不增加硬件及不改變輸齣濾波器結構的基礎上,從軟件控製方法上來增彊其阻尼性,使之更好地濾除高次諧波。倣真及試驗結果驗證瞭該方案的正確性和有效性,對新型特高壓試驗電源的工程應用及產品化具有一定的指導和藉鑒作用。
적요:침대신형조빈식해진특고압시험전원(UHV frequency tuned resonant test powersupply,UHV-FTRTPS)수출신호빈솔교관,불역획득최가파형저일문제,제출료일충신적특고압시험전원방안。재167-300Hz고빈솔단,채용동보정현맥관조제(sinusoidal pulse.widthmodulation,SPWM),파재파비Ⅳ적수치선택여수출려파기본신결구상결합,득도합리적최가Ⅳ치화려파기최소시재공솔。동시,재30-167Hz저빈솔단,채용특정차해파소제방법재선계산각개관각도,소약저차해파,파저차해파전이도고차해파,이리우수출려파기려제。최후,재수출려파기전용상천련1개허의전조,재불증가경건급불개변수출려파기결구적기출상,종연건공제방법상래증강기조니성,사지경호지려제고차해파。방진급시험결과험증료해방안적정학성화유효성,대신형특고압시험전원적공정응용급산품화구유일정적지도화차감작용。
In allusion to the problem of the wide frequency range of output signals of new type of UHV frequency-tunedresonant test power supply (FTRTPS) for UHVAC power transmission equipment and the difficulty to attain optimal waveform, a new scheme for UHV FTRTPS is proposed. In the higher frequency range from 167 Hz to 300 Hz, the output waveform is modulated by sinusoidal pulse-width modulation (SPWM) and the selection of carrier wave ratio N is combined with its own structure of output filter to attain reasonable value of N and minimum apparent power of the filter. Meanwhile, in the lower frequency range from 30 Hz to 167 Hz, a method of eliminating specified orders of harmonics is adopted to perform on-line calculation of switching angles, impair low-order harmonics and transfer low-order harmonics to high-order harmonics to facilitate the filtering of harmonics. Finally, a virtual resistance is connected in series to the capacitor of output filter, thus without adding extra hardware and changing the structure of output filter its damping is intensified by control software, therefore the filtering of high-order harmonics becomes better. The correctness and effectiveness of the proposed method are verified by simulation and test results.