中国机械工程
中國機械工程
중국궤계공정
CHINA MECHANICAl ENGINEERING
2012年
2期
204-207
,共4页
张本国%李强%王葛%张水仙
張本國%李彊%王葛%張水仙
장본국%리강%왕갈%장수선
连铸%漏钢预报%LM算法%BP神经网络
連鑄%漏鋼預報%LM算法%BP神經網絡
련주%루강예보%LM산법%BP신경망락
continuous casting%breakout prediction%LM (Levenberg Marquardt) algorithm%BP neural network
针对传统BP神经网络在训练过程中存在收敛速度慢的缺陷,将LM(levenberg marquardt)算法引入到BP神经网络的训练过程,建立了LM—BP神经网络模型,并将其应用于连铸过程中的漏钢预报系统。结合某钢厂连铸现场历史数据对系统进行了测试,测试结果以96.15%的预报率及100%的报出率,验证了基于LM算法的BP神经网络连铸漏钢预报方案的可行性和有效性。
針對傳統BP神經網絡在訓練過程中存在收斂速度慢的缺陷,將LM(levenberg marquardt)算法引入到BP神經網絡的訓練過程,建立瞭LM—BP神經網絡模型,併將其應用于連鑄過程中的漏鋼預報繫統。結閤某鋼廠連鑄現場歷史數據對繫統進行瞭測試,測試結果以96.15%的預報率及100%的報齣率,驗證瞭基于LM算法的BP神經網絡連鑄漏鋼預報方案的可行性和有效性。
침대전통BP신경망락재훈련과정중존재수렴속도만적결함,장LM(levenberg marquardt)산법인입도BP신경망락적훈련과정,건립료LM—BP신경망락모형,병장기응용우련주과정중적루강예보계통。결합모강엄련주현장역사수거대계통진행료측시,측시결과이96.15%적예보솔급100%적보출솔,험증료기우LM산법적BP신경망락련주루강예보방안적가행성화유효성。
LM algorithm was introduced to the training process of a BP neural network and a LM--BP neural network model was established aiming at the defects of slow convergence in the train- ing process of the traditional BP neural network. The LM--BP neural network model was applied to the breakout prediction in the continuous casting processes, and it was tested with the historical data collected from a steel mill. The feasibility and the validity of the model are verified by the results with the accuracy rate of 96.15% and the prediction rate of 100%