中国机械工程
中國機械工程
중국궤계공정
CHINA MECHANICAl ENGINEERING
2011年
19期
2337-2340,2392
,共5页
王立标%李军%范剑%李绣峰
王立標%李軍%範劍%李繡峰
왕립표%리군%범검%리수봉
无刷直流电机%自适应%DRNN%鲁棒性
無刷直流電機%自適應%DRNN%魯棒性
무쇄직류전궤%자괄응%DRNN%로봉성
brushless DC motor%self-adaptive%diagonal recurrent neural network(DRNN)%robustness
针对无刷直流电机速度控制存在高度非线性特性,提出了基于自适应DRNN(diagonal re-current neural network)的"前馈+反馈"控制方法。反馈控制器以目标转速与实际转速的误差为输入量,采用PI控制来提高控制系统的稳定性。前馈控制器采用DRNN,以反馈控制器的输出作为性能误差进行自适应控制,以提高控制系统的瞬态响应性能。仿真和实验结果表明:该控制系统能较好地跟踪目标转速,在突变负载扰动下,能有效地改善相电流波形,降低电机电磁转矩脉动,而且该控制系统具有较强的鲁棒性。
針對無刷直流電機速度控製存在高度非線性特性,提齣瞭基于自適應DRNN(diagonal re-current neural network)的"前饋+反饋"控製方法。反饋控製器以目標轉速與實際轉速的誤差為輸入量,採用PI控製來提高控製繫統的穩定性。前饋控製器採用DRNN,以反饋控製器的輸齣作為性能誤差進行自適應控製,以提高控製繫統的瞬態響應性能。倣真和實驗結果錶明:該控製繫統能較好地跟蹤目標轉速,在突變負載擾動下,能有效地改善相電流波形,降低電機電磁轉矩脈動,而且該控製繫統具有較彊的魯棒性。
침대무쇄직류전궤속도공제존재고도비선성특성,제출료기우자괄응DRNN(diagonal re-current neural network)적"전궤+반궤"공제방법。반궤공제기이목표전속여실제전속적오차위수입량,채용PI공제래제고공제계통적은정성。전궤공제기채용DRNN,이반궤공제기적수출작위성능오차진행자괄응공제,이제고공제계통적순태향응성능。방진화실험결과표명:해공제계통능교호지근종목표전속,재돌변부재우동하,능유효지개선상전류파형,강저전궤전자전구맥동,이차해공제계통구유교강적로봉성。
In view of brushless DC motor speed control for highly nonlinear characteristics,a self-adaptive DRNN control system was proposed.The controller consisted of a PI feedback controller and a self-adaptive DRNN feed-forward controller.The PI feedback controller used target speed and actual speed error for input to improve the stability of control system.The feed-forward controller was trained by using feedback controller outputs as learning error to improve transient performance of control system.The simulation and experimental results illustrate that the control system can track the target speed,reduce the torque ripple and improve the current waveform under load disturbances,which has strong robustness.