稀有金属
稀有金屬
희유금속
CHINESE JOURNAL OF RARE METALS
2009年
6期
825-830
,共6页
李建军%郝维昌%许怀哲%王天民
李建軍%郝維昌%許懷哲%王天民
리건군%학유창%허부철%왕천민
Zn_(0.95-x)Co_(0.05)Li_xO%稀磁半导体%缺陷%铁磁耦合机制
Zn_(0.95-x)Co_(0.05)Li_xO%稀磁半導體%缺陷%鐵磁耦閤機製
Zn_(0.95-x)Co_(0.05)Li_xO%희자반도체%결함%철자우합궤제
Zn_(0.95-x)Co_(0.05)Li_xO nanocrystals%diluted magnetic semiconductor%defects%ferromagnetic coupling
利用溶胶-凝胶法制备了不同组分的Zn_(0.95-x)Co_(0.05)Li_xO纳米颗粒, 并通过透射电子显微镜、 X射线衍射、紫外-可见吸收光谱和振动样品磁强计对其结构和磁性进行了系统的研究. 结果表明, 当Li掺杂比例在7%以下时, Zn_(0.95-x)Co_(0.05)Li_xO纳米颗粒仍具有很好的ZnO六角纤锌矿结构, 但随着Li掺杂量的增加, 晶格常数a和c值略有减小; Zn_(0.95-x)Co_(0.05)Li_xO的室温铁磁性随x的增大而显著增强. 当Li掺杂量达到9%时, 在Zn_(0.95-x)Co_(0.05)Li_xO纳米颗粒的XRD谱中检测出第二相的LiCoO_2団簇, 样品的铁磁磁化强度明显下降. 表征结果显示Li掺入Zn_(0.95)Co_(0.05)O的反应过程可以分为3个阶段. 前两个阶段分别在材料中引入了Li′_(Zn)深能级缺陷和Li~+填隙离子, 第三个阶段则产生了LiCoO_2第二相结构. 样品铁磁性的变化与Li掺杂引入的这些缺陷和第二相有关, 可由束缚磁极化子(BMP)模型解释.
利用溶膠-凝膠法製備瞭不同組分的Zn_(0.95-x)Co_(0.05)Li_xO納米顆粒, 併通過透射電子顯微鏡、 X射線衍射、紫外-可見吸收光譜和振動樣品磁彊計對其結構和磁性進行瞭繫統的研究. 結果錶明, 噹Li摻雜比例在7%以下時, Zn_(0.95-x)Co_(0.05)Li_xO納米顆粒仍具有很好的ZnO六角纖鋅礦結構, 但隨著Li摻雜量的增加, 晶格常數a和c值略有減小; Zn_(0.95-x)Co_(0.05)Li_xO的室溫鐵磁性隨x的增大而顯著增彊. 噹Li摻雜量達到9%時, 在Zn_(0.95-x)Co_(0.05)Li_xO納米顆粒的XRD譜中檢測齣第二相的LiCoO_2団簇, 樣品的鐵磁磁化彊度明顯下降. 錶徵結果顯示Li摻入Zn_(0.95)Co_(0.05)O的反應過程可以分為3箇階段. 前兩箇階段分彆在材料中引入瞭Li′_(Zn)深能級缺陷和Li~+填隙離子, 第三箇階段則產生瞭LiCoO_2第二相結構. 樣品鐵磁性的變化與Li摻雜引入的這些缺陷和第二相有關, 可由束縳磁極化子(BMP)模型解釋.
이용용효-응효법제비료불동조분적Zn_(0.95-x)Co_(0.05)Li_xO납미과립, 병통과투사전자현미경、 X사선연사、자외-가견흡수광보화진동양품자강계대기결구화자성진행료계통적연구. 결과표명, 당Li참잡비례재7%이하시, Zn_(0.95-x)Co_(0.05)Li_xO납미과립잉구유흔호적ZnO륙각섬자광결구, 단수착Li참잡량적증가, 정격상수a화c치략유감소; Zn_(0.95-x)Co_(0.05)Li_xO적실온철자성수x적증대이현저증강. 당Li참잡량체도9%시, 재Zn_(0.95-x)Co_(0.05)Li_xO납미과립적XRD보중검측출제이상적LiCoO_2단족, 양품적철자자화강도명현하강. 표정결과현시Li참입Zn_(0.95)Co_(0.05)O적반응과정가이분위3개계단. 전량개계단분별재재료중인입료Li′_(Zn)심능급결함화Li~+전극리자, 제삼개계단칙산생료LiCoO_2제이상결구. 양품철자성적변화여Li참잡인입적저사결함화제이상유관, 가유속박자겁화자(BMP)모형해석.
Zn_(0.95-x)Co_(0.05)Li_xO (x=0~0.09) nanocrystals were synthesized by sol-gel method. Detailed characterization by XRD, UV-Vis absorption spectrum, and vibration sample magnetometer (VSM) indicated that Li-Co co-doping did not change the Wurtzite structure of ZnO when x≤7%. With the increase of Li-dopant, the lattice constants a and c decreased owing to the substitution of Zn~(2+) by Li~+ ions, the ferromagnetism increased gradually. However, the ferromagnetism droped sharply when Li-dopant increased to 9%. At the same time, second-phase clusters of LiCoO_2 were detected in the XRD pattern and the lattice constants almost stopped decreasing. Experimental results suggested that the reaction of Li incorporation could be divided into 3 stages. Li′_(Zn) deep-level defects and Li_i~+ interstitials were induced into the material at the former two stages respectively, while the second-phase LiCoO_2 formed at the third stage. These defects and second-phase structures induced by Li-doping played important roles in enhancing the ferromagnetism of the samples, which could be explained by the bound magneton polaron (BMP) model.