遥感学报
遙感學報
요감학보
JOURNAL OF REMOTE SENSING
2009年
6期
1170-1186
,共17页
植被长时序趋势变化%评价方法%Sen+Mann-Kendall
植被長時序趨勢變化%評價方法%Sen+Mann-Kendall
식피장시서추세변화%평개방법%Sen+Mann-Kendall
long time series vegetation trends LTSVT%evaluation methods%Sen + Mann-Kendall
基于遥感的植被长时序变化特征是植被生态学研究的核心领域,也是全球变化研究的重点方向.AVHRR、SPOT VGT和MODIS是当前研究植被长时序趋势变化的主要数据源.海量数据不断积累的同时,植被长时序趋势特征研究方法却缺乏对比评价和分析.当前常用的方法有代数运算法、傅里叶变换、主成分分析、小波变换法、回归分析法和相关系数分析法等.在对各种方法评述和分析的基础上.重点讨论和对比了主流方法中的回归分析法和相关系数分析与新兴方法Sen+Mann-Kendall法.结果表明,Sen+Mann-Kendall能克服主流方法的不足,不需要数据服从某一特定分布,并且对数据的误差具有较强的抵抗能力.
基于遙感的植被長時序變化特徵是植被生態學研究的覈心領域,也是全毬變化研究的重點方嚮.AVHRR、SPOT VGT和MODIS是噹前研究植被長時序趨勢變化的主要數據源.海量數據不斷積纍的同時,植被長時序趨勢特徵研究方法卻缺乏對比評價和分析.噹前常用的方法有代數運算法、傅裏葉變換、主成分分析、小波變換法、迴歸分析法和相關繫數分析法等.在對各種方法評述和分析的基礎上.重點討論和對比瞭主流方法中的迴歸分析法和相關繫數分析與新興方法Sen+Mann-Kendall法.結果錶明,Sen+Mann-Kendall能剋服主流方法的不足,不需要數據服從某一特定分佈,併且對數據的誤差具有較彊的牴抗能力.
기우요감적식피장시서변화특정시식피생태학연구적핵심영역,야시전구변화연구적중점방향.AVHRR、SPOT VGT화MODIS시당전연구식피장시서추세변화적주요수거원.해량수거불단적루적동시,식피장시서추세특정연구방법각결핍대비평개화분석.당전상용적방법유대수운산법、부리협변환、주성분분석、소파변환법、회귀분석법화상관계수분석법등.재대각충방법평술화분석적기출상.중점토론화대비료주류방법중적회귀분석법화상관계수분석여신흥방법Sen+Mann-Kendall법.결과표명,Sen+Mann-Kendall능극복주류방법적불족,불수요수거복종모일특정분포,병차대수거적오차구유교강적저항능력.
The long time series vegetation trends (LTSVT) research based on remote sensing in large area is the core field of vegetation ecology and an important direction in the global change study. AVHRR, SPOT VGT and MODIS are currently the main data resources of LTSVT research. With volumes of remote sensing data, the analysis and evaluation methods for LTSVT study emerged as an urgent issue. Algebra calculation, Fourier transformation, PCA analysis, wavelet transform, linear trend analysis (LTA), correlation analysis (CA), etc., are the main methods. After the assessing and grouping of the methods, we focused on comparing the LTA and CA, which were well accepted methods, with the newly introduced Sen + Mann-Kendall method. Our review showed Sen + Mann-Kendall had a strong strength of errors resistance and was not constrained by the data statistical distribution.