实验力学
實驗力學
실험역학
JOURNAL OF EXPERIMENTAL MECHANICS
2007年
3期
206-216
,共11页
汪柳生%尤辛基%张青川%何世平
汪柳生%尤辛基%張青川%何世平
왕류생%우신기%장청천%하세평
微光学包装%微波加热%实时监控%纳米加热器
微光學包裝%微波加熱%實時鑑控%納米加熱器
미광학포장%미파가열%실시감공%납미가열기
Micro optics packaging%Microwave heating%real time monitoring%Nano-heaters
本文讨论纳米精确度光学对准技术, 以用于采用热固化树脂的微光学包装.为了达到一个快速固化过程,直接将微波能量作用于需要进行光学粘合的地方.然而常规微波加热技术,依赖于树脂和元件之间的高质量比.为了改进微光学包装中微量粘合剂的热吸收率,我们先将接合面抛光, 再镀上金属薄层.这样一来, 微波能量将被镀层快速吸收.为防止接合面过热,采用一个红外(IR)温度传感器,以监测粘合剂的温度.根据温度的高低, 一个自动化的系统则可以调整微波的功率输出,以便达到相对恒定的固化温度.在快速固化过程中,预先调准好的微光系统,如光纤耦合器,将由于加热的不均匀性而不可避免地遭受干扰.为补偿这个副效应,开发了一个实时光学对准监控和反馈系统.以包装光纤耦合器为例,该系统可实时监测当粘合剂由微波固化时器件的插入损失(IL).我们采用的一种三维压电变换装置(PZT)可达到x-、y-和z-方向的的对准.该PZT的10nm调节精度可监测出0.004 dB 的IL敏感性.与常规的固化烤箱比较, 该系统的微光学包装效率可提高150倍.由于采用实时监控和反馈系统,批量生产中产品的合格率也将大大改善.
本文討論納米精確度光學對準技術, 以用于採用熱固化樹脂的微光學包裝.為瞭達到一箇快速固化過程,直接將微波能量作用于需要進行光學粘閤的地方.然而常規微波加熱技術,依賴于樹脂和元件之間的高質量比.為瞭改進微光學包裝中微量粘閤劑的熱吸收率,我們先將接閤麵拋光, 再鍍上金屬薄層.這樣一來, 微波能量將被鍍層快速吸收.為防止接閤麵過熱,採用一箇紅外(IR)溫度傳感器,以鑑測粘閤劑的溫度.根據溫度的高低, 一箇自動化的繫統則可以調整微波的功率輸齣,以便達到相對恆定的固化溫度.在快速固化過程中,預先調準好的微光繫統,如光纖耦閤器,將由于加熱的不均勻性而不可避免地遭受榦擾.為補償這箇副效應,開髮瞭一箇實時光學對準鑑控和反饋繫統.以包裝光纖耦閤器為例,該繫統可實時鑑測噹粘閤劑由微波固化時器件的插入損失(IL).我們採用的一種三維壓電變換裝置(PZT)可達到x-、y-和z-方嚮的的對準.該PZT的10nm調節精度可鑑測齣0.004 dB 的IL敏感性.與常規的固化烤箱比較, 該繫統的微光學包裝效率可提高150倍.由于採用實時鑑控和反饋繫統,批量生產中產品的閤格率也將大大改善.
본문토론납미정학도광학대준기술, 이용우채용열고화수지적미광학포장.위료체도일개쾌속고화과정,직접장미파능량작용우수요진행광학점합적지방.연이상규미파가열기술,의뢰우수지화원건지간적고질량비.위료개진미광학포장중미량점합제적열흡수솔,아문선장접합면포광, 재도상금속박층.저양일래, 미파능량장피도층쾌속흡수.위방지접합면과열,채용일개홍외(IR)온도전감기,이감측점합제적온도.근거온도적고저, 일개자동화적계통칙가이조정미파적공솔수출,이편체도상대항정적고화온도.재쾌속고화과정중,예선조준호적미광계통,여광섬우합기,장유우가열적불균균성이불가피면지조수간우.위보상저개부효응,개발료일개실시광학대준감공화반궤계통.이포장광섬우합기위례,해계통가실시감측당점합제유미파고화시기건적삽입손실(IL).아문채용적일충삼유압전변환장치(PZT)가체도x-、y-화z-방향적적대준.해PZT적10nm조절정도가감측출0.004 dB 적IL민감성.여상규적고화고상비교, 해계통적미광학포장효솔가제고150배.유우채용실시감공화반궤계통,비량생산중산품적합격솔야장대대개선.
This paper discusses a nanometer level precision alignment technique as applied to highly efficient micro optics packaging using heat curable adhesives. To achieve a fast curing process, we deposit microwave energy to the spot where optical bonding is desired. Conventional microwave heating technique, however, as we know it, relies on large mass ratio between the epoxy and the components to be bonded. In order to improve the efficiency of heat absorption by the tiny amount of adhesive used for micro optics packaging, we pre-process the components to be bonded, by first polishing the bonding surfaces and then depositing a very thin layer of metalized film on them. An infrared (IR) remote temperature sensor is utilized to monitor the temperature of the adhesive (to prevent over heating). An automated system can then adjust the power output of the microwave so that a fairly constant curing temperature can be maintained. During the fast curing process, pre-alignment of micro optics, such as fiber optic coupler, will inevitably suffer minor misalignment due to non-uniform heating of the components. To compensate for this side-effect, we have developed a real time alignment monitoring and feedback controlled system. As an example to packaging fiber couplers, such a system can monitor the insertion loss (IL) of a component in real time while the adhesive is being cured by the microwave energy. A 3-dimensional piezo-electric transducer (PZT) is employed to achieve the x-, y-, and z-axis alignment. A level of 10 nanometer alignment can be readily achieved which in turn leads to an IL sensitivity of as small as 0.004dB. An improvement of a packaging efficiency as high as 150 times has been demonstrated, compared to conventional blind oven curing process. Yield of micro optics packaging is also expected to increase due to the use of real time alignment process.