数学杂志
數學雜誌
수학잡지
JOURNAL OF MATHEMATICS
2006年
2期
125-132
,共8页
推广的增长曲线模型%广义最小二乘估计%损失矩阵函数%风险矩阵函数%容许性估计
推廣的增長麯線模型%廣義最小二乘估計%損失矩陣函數%風險矩陣函數%容許性估計
추엄적증장곡선모형%엄의최소이승고계%손실구진함수%풍험구진함수%용허성고계
the extensive growth model%the risk matrix function%the admissible estimate
本文在设计矩阵与结构矩阵分别正交的条件下,研究了推广的生长曲线模型未知参数矩阵的广义最小二乘估计.运用矩阵理论证明了此广义最小二乘估计在某个线性估计类中的可容许性.并对潘建新(1989)的结果的推广.
本文在設計矩陣與結構矩陣分彆正交的條件下,研究瞭推廣的生長麯線模型未知參數矩陣的廣義最小二乘估計.運用矩陣理論證明瞭此廣義最小二乘估計在某箇線性估計類中的可容許性.併對潘建新(1989)的結果的推廣.
본문재설계구진여결구구진분별정교적조건하,연구료추엄적생장곡선모형미지삼수구진적엄의최소이승고계.운용구진이론증명료차엄의최소이승고계재모개선성고계류중적가용허성.병대반건신(1989)적결과적추엄.
In this paper, we study the extensive growth curve model under the condition that the design matrices and structure matrices are respectively orthogonal. The generalized least square estimate (simply noted as GLSE) on the unknown parameter matrices in the model and the admissibility of GLSE for linear estimate class are proved by using the matrix theory. It generalizes the results of Pan Jian-xin (1989).