中国矿业大学学报
中國礦業大學學報
중국광업대학학보
JOURNAL OF CHINA UNIVERSITY OF MINING & TECHNOLOGY
2001年
3期
248-251
,共4页
超声检测%小波变换%特征提取%可分性判据
超聲檢測%小波變換%特徵提取%可分性判據
초성검측%소파변환%특정제취%가분성판거
针对超声检测回波信号中可能具有噪声干扰并难以剔除的问题,提出了利用“小波降噪”对超声信号进行处理的算法和应用“类别可分性判据”评价特征值的方法,并通过实验进行了验证.首先将小波变换用于超声信号噪声处理,然后利用类别可分性判据对缺陷信号的特征选择进行评价,最后通过RBF网络对获得的超声检波信号进行缺陷分类以验证这种方法的有效性.实验结果表明:小波降噪算法充分利用了超声回波信号的时域、频域信息,不仅降噪效果明显,而且缺陷定位准确;类别可分性判据对缺陷信号的特征提取也起了定量衡量尺度的作用.
針對超聲檢測迴波信號中可能具有譟聲榦擾併難以剔除的問題,提齣瞭利用“小波降譟”對超聲信號進行處理的算法和應用“類彆可分性判據”評價特徵值的方法,併通過實驗進行瞭驗證.首先將小波變換用于超聲信號譟聲處理,然後利用類彆可分性判據對缺陷信號的特徵選擇進行評價,最後通過RBF網絡對穫得的超聲檢波信號進行缺陷分類以驗證這種方法的有效性.實驗結果錶明:小波降譟算法充分利用瞭超聲迴波信號的時域、頻域信息,不僅降譟效果明顯,而且缺陷定位準確;類彆可分性判據對缺陷信號的特徵提取也起瞭定量衡量呎度的作用.
침대초성검측회파신호중가능구유조성간우병난이척제적문제,제출료이용“소파강조”대초성신호진행처리적산법화응용“유별가분성판거”평개특정치적방법,병통과실험진행료험증.수선장소파변환용우초성신호조성처리,연후이용유별가분성판거대결함신호적특정선택진행평개,최후통과RBF망락대획득적초성검파신호진행결함분류이험증저충방법적유효성.실험결과표명:소파강조산법충분이용료초성회파신호적시역、빈역신식,불부강조효과명현,이차결함정위준학;유별가분성판거대결함신호적특정제취야기료정량형량척도적작용.
There are usually two problems in flaw classification in ultrasonic testing. One is the noise in echo signal in ultrasonic testing, which is sometimes very difficult to eliminate. The other is the criterion problem for validity evaluation in echo signal characteristic extraction. A noise eliminating method for ultrasonic signal with wavelet denoise was presented and sort separability criterion was used to solve the second problem in this paper. And these two methods were verified by some experiments. Firstly wavelet transform was used in denoising process of ultrasonic signal; Then sort separability criterion was used to evaluate the characteristic choice of flaw signals; And finally the characteristic values of flaws in demodulated signal were classified by RBF neural network to validate the above methods. Results of the experiments show that due to making the best use of the information of time and frequency domain at the same time in ultrasonic echo signals, wavelet deniose algorithm not only decreases the noises obviously, but also locates flaws accuratelly. And the sort separability criterion can also play the role of being a quantification measure on the characteristic extracting of flaw signals.