解剖学报
解剖學報
해부학보
ACTA ANATOMICA SINICA
2009年
4期
599-603
,共5页
徐存拴%邢雪琨%杨献光%朱秋实%窦磊%刘帅帅%李幼%张富春
徐存拴%邢雪琨%楊獻光%硃鞦實%竇磊%劉帥帥%李幼%張富春
서존전%형설곤%양헌광%주추실%두뢰%류수수%리유%장부춘
肝再生%液压转基因技术%基因表达%大鼠
肝再生%液壓轉基因技術%基因錶達%大鼠
간재생%액압전기인기술%기인표체%대서
Liver regeneration%Hydrodynamics-based transgene%Gene expression%Rat
目的 探讨液压转基因技术(HDT)应用于大鼠再生肝转基因的条件和方法 . 方法 以2ml/s的速度将浓度为30mg/L的含目的 基因的质粒注射入大鼠尾静脉,于注射前/后不同时间进行大鼠2/3肝切除(PH),于PH后不同恢复时间称量大鼠体重(g)和再生肝重(g),计算肝系数(Lc),并从Lc±Lc*0%、*5%、*10%、*15%、*20%、*25%、*30%、*35%等15组中找出最佳组,作为计算不同恢复时间再生肝最适注射质粒溶液量的校正系数(Trc);取大鼠肝右叶中部组织制备冷冻切片,在波长488nm的荧光显微镜下观察、计数1万个细胞中的绿色荧光蛋白阳性细胞百分率. 结果 PH后注射生理盐水和注射空质粒对肝再生的影响与对照(只进行PH)相比无显著差异.PH前液压转基因的合适时间是PH前≥12h;PH后所有时间均可进行液压转基因.PH后对肝再生大鼠进行液压转基因的转基因溶液体积为大鼠体重(g)×9%×1/3×相应的校正系数(Trc).转入基因在体内的表达时间和丰度既受载体影响,又受插入的目的 基因影响. 结论 液压转基因技术亦可有效地应用于大鼠再生肝转基因研究.
目的 探討液壓轉基因技術(HDT)應用于大鼠再生肝轉基因的條件和方法 . 方法 以2ml/s的速度將濃度為30mg/L的含目的 基因的質粒註射入大鼠尾靜脈,于註射前/後不同時間進行大鼠2/3肝切除(PH),于PH後不同恢複時間稱量大鼠體重(g)和再生肝重(g),計算肝繫數(Lc),併從Lc±Lc*0%、*5%、*10%、*15%、*20%、*25%、*30%、*35%等15組中找齣最佳組,作為計算不同恢複時間再生肝最適註射質粒溶液量的校正繫數(Trc);取大鼠肝右葉中部組織製備冷凍切片,在波長488nm的熒光顯微鏡下觀察、計數1萬箇細胞中的綠色熒光蛋白暘性細胞百分率. 結果 PH後註射生理鹽水和註射空質粒對肝再生的影響與對照(隻進行PH)相比無顯著差異.PH前液壓轉基因的閤適時間是PH前≥12h;PH後所有時間均可進行液壓轉基因.PH後對肝再生大鼠進行液壓轉基因的轉基因溶液體積為大鼠體重(g)×9%×1/3×相應的校正繫數(Trc).轉入基因在體內的錶達時間和豐度既受載體影響,又受插入的目的 基因影響. 結論 液壓轉基因技術亦可有效地應用于大鼠再生肝轉基因研究.
목적 탐토액압전기인기술(HDT)응용우대서재생간전기인적조건화방법 . 방법 이2ml/s적속도장농도위30mg/L적함목적 기인적질립주사입대서미정맥,우주사전/후불동시간진행대서2/3간절제(PH),우PH후불동회복시간칭량대서체중(g)화재생간중(g),계산간계수(Lc),병종Lc±Lc*0%、*5%、*10%、*15%、*20%、*25%、*30%、*35%등15조중조출최가조,작위계산불동회복시간재생간최괄주사질립용액량적교정계수(Trc);취대서간우협중부조직제비냉동절편,재파장488nm적형광현미경하관찰、계수1만개세포중적록색형광단백양성세포백분솔. 결과 PH후주사생리염수화주사공질립대간재생적영향여대조(지진행PH)상비무현저차이.PH전액압전기인적합괄시간시PH전≥12h;PH후소유시간균가진행액압전기인.PH후대간재생대서진행액압전기인적전기인용액체적위대서체중(g)×9%×1/3×상응적교정계수(Trc).전입기인재체내적표체시간화봉도기수재체영향,우수삽입적목적 기인영향. 결론 액압전기인기술역가유효지응용우대서재생간전기인연구.
Objective To study the conditions and methods of hydrodynamics-based transgene into rat regenerating liver in vivo. Methods The solution with concentration 30mg/L gene-containing plasmid was injected into rat tail veins at a speed of 2ml/s, then partial hepatectomy (PH) was performed at different times before/after injection, finally the rat (g) and regenerating liver (g) were weighed, and the liver coefficient (Lc) was calculated. Out of 15 groups which are Lc±Lc*0%, *5%, *10%, *15%, *20%, *25%, *30%, *35%, the most suitable group was chosen as correction coefficient to calculate the most appropriate volume of plasmid solution which was injected into the regenerating liver at different recovery times, and at the same time, right lobe of liver was gathered to make frozen section, then observe and quantify the positive green fluorescent protein (GFP) rate at 488 nm excitation wavelength. Results Injection of either physiological saline or empty plasmid has no significant difference compared with control (only PH performance). The appropriate time of hydrodynamics-based transgene is more than 12 hours before PH or anytime after PH. The solution volume of hydrodynamics-based transgene into liver regenerating rat after PH is rat weight (g) ×9%×1/3×corresponding correction coefficient (Trc). Both vector and target gene have effect on the time and abundance of gene expression. Conclusion Hydrodynamics-based transgene can effectively be applied to gene transfection in rat regenerating liver.