应用力学学报
應用力學學報
응용역학학보
CHINESE JOURNAL OF APPLIED MECHANICS
2010年
1期
58-62
,共5页
李金平%陈建军%朱增青%刘国梁
李金平%陳建軍%硃增青%劉國樑
리금평%진건군%주증청%류국량
最大熵原理%概率密度函数%积分渐近近似%随机参数%温度场
最大熵原理%概率密度函數%積分漸近近似%隨機參數%溫度場
최대적원리%개솔밀도함수%적분점근근사%수궤삼수%온도장
maximum entropy principle%probability density Junction%asymptotic approximation of integral%random parameters%temperature field
针对具有随机参数的稳态温度场分析,利用拉普拉斯多维积分的渐近展开及函数的泰勒级数展开等方法,求得了节点温度响应的原点矩近似解析表达式.在最大熵原理基础上,获得了节点温度响应的概率密度函数.算例将该方法与Monte-Carlo模拟法进行比较,表明该方法具有较好的精度,且在参数变异性较大时也能获得较满意的结果.
針對具有隨機參數的穩態溫度場分析,利用拉普拉斯多維積分的漸近展開及函數的泰勒級數展開等方法,求得瞭節點溫度響應的原點矩近似解析錶達式.在最大熵原理基礎上,穫得瞭節點溫度響應的概率密度函數.算例將該方法與Monte-Carlo模擬法進行比較,錶明該方法具有較好的精度,且在參數變異性較大時也能穫得較滿意的結果.
침대구유수궤삼수적은태온도장분석,이용랍보랍사다유적분적점근전개급함수적태륵급수전개등방법,구득료절점온도향응적원점구근사해석표체식.재최대적원리기출상,획득료절점온도향응적개솔밀도함수.산례장해방법여Monte-Carlo모의법진행비교,표명해방법구유교호적정도,차재삼수변이성교대시야능획득교만의적결과.
A method for solving static temperature field with random parameters is presented.In the proposed method,the approximate analytical expressions of raw moments of nodal temperature response are obtained,by employing the asymptotic approximation of multidimensional integrals and the Taylor expansions of functions.On the basis of maximum entropy principle,the probability density functions(PDF) of nodal temperature response are developed.The results via the proposed method and the Monte Carlo simulation are compared in an example.It shows that the proposed method is of high precision and even when the variation of random variables is large,satisfactory results may be obtained.