中华烧伤杂志
中華燒傷雜誌
중화소상잡지
16
2011年
4期
260-264
,共5页
王新刚%韩春茂%有传刚%郑玉蓉%李齐寅%张莉萍
王新剛%韓春茂%有傳剛%鄭玉蓉%李齊寅%張莉萍
왕신강%한춘무%유전강%정옥용%리제인%장리평
组织工程%胶原%壳聚糖%血管化%聚乳酸-羟基乙酸%机械强度
組織工程%膠原%殼聚糖%血管化%聚乳痠-羥基乙痠%機械彊度
조직공정%효원%각취당%혈관화%취유산-간기을산%궤계강도
Tissue engineering%Collagen%Chitosan%Vascularization%Poly-lactic-co-glycolic acid: Mechanical properties
目的 观察聚乳酸-羟基乙酸( PLGA)编织网/胶原-壳聚糖多孔支架(PCCS)对血管化的影响,探讨其相关机制。 方法 (1)采用冷冻-冻干法制备PCCS和胶原-壳聚糖支架(CCS),对比观察PCCS、PLGA编织网及CCS的微观形态及吸水能力。(2)取PCCS与CCS样本,分别植入24只SD大鼠脊柱两侧皮下,按照随机数字表法将大鼠分成3批,于术后1、2、4周分批处死大鼠,采集埋植部位皮肤标本,行组织病理学、免疫组织化学检测;采用实时定量RT-PCR检测其α平滑肌肌动蛋白(α-SMA)与血管内皮生长因子(VEGF)的mRNA表达水平。对数据进行t检验。 结果 (1)PLGA编织网与胶原-壳聚糖海绵紧密结合,形成的PCCS具有与CCS相类似的三维多孔结构。(2)PCCS的吸水率为( 506±15)%,显著高于PLGA编织网的(195±15)%,明显低于CCS的(627 ±21)%,t值分别为11.9、3.8,P<0.05或P<0.001。(3)CCS 4周左右完成支架全层的组织长入,PCCS仅用2周完成这一过程且形成的新生胶原更加丰富、分布均匀。(4)随着埋植时间的延长,2种支架的血管逐渐由支架周围向支架内部长入。术后1、2、4周,PCCS中血管计数依次为(10.7±3.2)、(18.6±2.1)、(30.3±4.5)条/mm2,明显高于CCS的(5.4±0.9)、(10.8±4.2)、(23.6±1.7)条/mm2,t值分别为4.6、4.4和4.5,P值均小于0.01。(5)术后各时相点PCCS中α-SMA与VEGF的mRNA表达水平均高于CCS(t值分别为1.26、1.63、2.17与5.52、2.07、1.78,P值均小于0.01)。 结论 PCCS能够快速诱导血管长入并促进血管成熟,其中支架的机械支撑作用与三维多孔结构具有重要协同作用。
目的 觀察聚乳痠-羥基乙痠( PLGA)編織網/膠原-殼聚糖多孔支架(PCCS)對血管化的影響,探討其相關機製。 方法 (1)採用冷凍-凍榦法製備PCCS和膠原-殼聚糖支架(CCS),對比觀察PCCS、PLGA編織網及CCS的微觀形態及吸水能力。(2)取PCCS與CCS樣本,分彆植入24隻SD大鼠脊柱兩側皮下,按照隨機數字錶法將大鼠分成3批,于術後1、2、4週分批處死大鼠,採集埋植部位皮膚標本,行組織病理學、免疫組織化學檢測;採用實時定量RT-PCR檢測其α平滑肌肌動蛋白(α-SMA)與血管內皮生長因子(VEGF)的mRNA錶達水平。對數據進行t檢驗。 結果 (1)PLGA編織網與膠原-殼聚糖海綿緊密結閤,形成的PCCS具有與CCS相類似的三維多孔結構。(2)PCCS的吸水率為( 506±15)%,顯著高于PLGA編織網的(195±15)%,明顯低于CCS的(627 ±21)%,t值分彆為11.9、3.8,P<0.05或P<0.001。(3)CCS 4週左右完成支架全層的組織長入,PCCS僅用2週完成這一過程且形成的新生膠原更加豐富、分佈均勻。(4)隨著埋植時間的延長,2種支架的血管逐漸由支架週圍嚮支架內部長入。術後1、2、4週,PCCS中血管計數依次為(10.7±3.2)、(18.6±2.1)、(30.3±4.5)條/mm2,明顯高于CCS的(5.4±0.9)、(10.8±4.2)、(23.6±1.7)條/mm2,t值分彆為4.6、4.4和4.5,P值均小于0.01。(5)術後各時相點PCCS中α-SMA與VEGF的mRNA錶達水平均高于CCS(t值分彆為1.26、1.63、2.17與5.52、2.07、1.78,P值均小于0.01)。 結論 PCCS能夠快速誘導血管長入併促進血管成熟,其中支架的機械支撐作用與三維多孔結構具有重要協同作用。
목적 관찰취유산-간기을산( PLGA)편직망/효원-각취당다공지가(PCCS)대혈관화적영향,탐토기상관궤제。 방법 (1)채용냉동-동간법제비PCCS화효원-각취당지가(CCS),대비관찰PCCS、PLGA편직망급CCS적미관형태급흡수능력。(2)취PCCS여CCS양본,분별식입24지SD대서척주량측피하,안조수궤수자표법장대서분성3비,우술후1、2、4주분비처사대서,채집매식부위피부표본,행조직병이학、면역조직화학검측;채용실시정량RT-PCR검측기α평활기기동단백(α-SMA)여혈관내피생장인자(VEGF)적mRNA표체수평。대수거진행t검험。 결과 (1)PLGA편직망여효원-각취당해면긴밀결합,형성적PCCS구유여CCS상유사적삼유다공결구。(2)PCCS적흡수솔위( 506±15)%,현저고우PLGA편직망적(195±15)%,명현저우CCS적(627 ±21)%,t치분별위11.9、3.8,P<0.05혹P<0.001。(3)CCS 4주좌우완성지가전층적조직장입,PCCS부용2주완성저일과정차형성적신생효원경가봉부、분포균균。(4)수착매식시간적연장,2충지가적혈관축점유지가주위향지가내부장입。술후1、2、4주,PCCS중혈관계수의차위(10.7±3.2)、(18.6±2.1)、(30.3±4.5)조/mm2,명현고우CCS적(5.4±0.9)、(10.8±4.2)、(23.6±1.7)조/mm2,t치분별위4.6、4.4화4.5,P치균소우0.01。(5)술후각시상점PCCS중α-SMA여VEGF적mRNA표체수평균고우CCS(t치분별위1.26、1.63、2.17여5.52、2.07、1.78,P치균소우0.01)。 결론 PCCS능구쾌속유도혈관장입병촉진혈관성숙,기중지가적궤계지탱작용여삼유다공결구구유중요협동작용。
Objective To investigate the effects of poly-lactic-co-glycolic acid (PLGA) knitted mesh/collagen-chitosan hybrid scaffold (PCCS) on angiogenesis, and to explore the relative mechanisms.Methods PLGA knitted mesh was integrated into collagen-chitosan scaffold (CCS) to construct PCCS with freeze-lyophilizing method, and CCS was made with the same method. The characteristics of morphology and water absorbing capacity among PCCS, PLGA knitted mesh, and CCS were compared in vitro. PCCS and CCS was respectively implanted into subcutaneous tissue of back on both sides in 24 SD rats, and the tissue specimens were harvested at post operation week ( POW ) 1,2, and 4 according to the random number table to evaluate the level of angiogenesis by histopathological and immunohistochemical examinations. The expression levels of alpha smooth muscle actin (α-SMA) and vascular endothelial growth factor (VEGF) mRNA were examined by real-time quantitative RT-PCR. Data were processed with t test. Results ( 1 ) PLGA knitted mesh was closely integrated with sponge of collagen-chitosan in PCCS, and the porous structure of PCCS was similar to that of CCS. (2) Compared with that of PCCS [(506 ± 15)%] , the water absorbing rate of CCS and PLGA knitted mesh was respectively increased and decreased [(627 ± 21 )%, (195 ±15 ) % , with t value respectively 3.8, 11. 9, P < 0.05 or P < 0.001]. ( 3 ) The scaffolds were filled with newly formed tissue in CCS at POW 4, while those in PCCS were observed at POW 2 with more homogeneous and abundant collagen. (4) Blood vessels could be induced, and they grew into scaffolds along with prolongation of implantation time in PCCS and CCS. The number of mature blood vessels in PCCS at POW 1, 2, 4[( 10. 7 ± 3.2) , ( 18.6 ± 2. 1 ), and (30.3 ± 4.5 ) branches per square centimeter] was respectively higher than that in CCS [(5.4 ± 0.19 ), ( 10.8 ± 4.2), and ( 23.6 ± 1.7) branches per square centimeter, with t value respectively 4.6, 4.4, 4.5, P values all below 0.01]. (5) The expression levels of α-SMA and VEGF mRNA in PCCS at POW 1, 2, 4 were significantly higher than those in the CCS ( with t α-SMA value respectively 1.26, 1.63,2. 17, with t VEGF value respectively 5.52, 2.07, 1.78, P values all below 0.01 ).Conclusions PCCS is able to induce the ingrowth of blood vessels rapidly and promote their maturity. The mechanical properties and microstructures of scaffolds play synergistic role in the process of angiogenesis.