河南大学学报(自然科学版)
河南大學學報(自然科學版)
하남대학학보(자연과학판)
JOURNAL OF HENAN UNIVERSITY(NATURAL SCIENCE)
2009年
2期
111-117
,共7页
Newton-Boussinesq方程组%先验估计%整体吸引子%Hausdorff维数和分形维数
Newton-Boussinesq方程組%先驗估計%整體吸引子%Hausdorff維數和分形維數
Newton-Boussinesq방정조%선험고계%정체흡인자%Hausdorff유수화분형유수
Newton-Boussinesq equations%a priori estimate%global attractor%Hausdorff and fractal dimensions
研究Newton-Boussinesq方程组解的长时间行为. 通过一致先验估计,证明了周期边值问题整体吸引子的存在性,得到了整体吸引子Hausdorff维数及分形维数的上界估计.
研究Newton-Boussinesq方程組解的長時間行為. 通過一緻先驗估計,證明瞭週期邊值問題整體吸引子的存在性,得到瞭整體吸引子Hausdorff維數及分形維數的上界估計.
연구Newton-Boussinesq방정조해적장시간행위. 통과일치선험고계,증명료주기변치문제정체흡인자적존재성,득도료정체흡인자Hausdorff유수급분형유수적상계고계.
The long time behavior of solution of the generalized Newton-Boussinesq equations is considered. The existence of global attractor of the periodic initial value problem is proved, and the estimates of the upper bounds of Hausdorff and fractal dimensions for the global attractor are obtained by means of uniform a priori estimates method.