桂林工学院学报
桂林工學院學報
계림공학원학보
JOURNAL OF GUILIN INSTITUTE OF TECHNOLOGY
2009年
4期
548-554
,共7页
李水明%舒宁%陶建斌%张银桥
李水明%舒寧%陶建斌%張銀橋
리수명%서저%도건빈%장은교
K2结构学习算法%特征%选择%最优特征子集%分类%石漠化信息
K2結構學習算法%特徵%選擇%最優特徵子集%分類%石漠化信息
K2결구학습산법%특정%선택%최우특정자집%분류%석막화신식
K2 structure learning algorithm%feature selection%optimal feature subset%classification%rock desertification information
在石漠化信息的分类和提取过程中,冗余特征的存在影响分类器的性能,同时增加计算的复杂度.提出一种基于K2结构学习算法的石漠化数据特征选择方法,该方法通过BIC评分方法得到贝叶斯网络的结构,从中获得类节点的马尔可夫覆盖,继而进行特征选择.同时借用不同评分函数的等价性来确定结构学习时所需的样本数,并且给出了样本数的参考.实验表明,该方法由于结合了样本的分类信息,获得的特征子集是最优的,显著提高了分类精度,降低了计算复杂度.
在石漠化信息的分類和提取過程中,冗餘特徵的存在影響分類器的性能,同時增加計算的複雜度.提齣一種基于K2結構學習算法的石漠化數據特徵選擇方法,該方法通過BIC評分方法得到貝葉斯網絡的結構,從中穫得類節點的馬爾可伕覆蓋,繼而進行特徵選擇.同時藉用不同評分函數的等價性來確定結構學習時所需的樣本數,併且給齣瞭樣本數的參攷.實驗錶明,該方法由于結閤瞭樣本的分類信息,穫得的特徵子集是最優的,顯著提高瞭分類精度,降低瞭計算複雜度.
재석막화신식적분류화제취과정중,용여특정적존재영향분류기적성능,동시증가계산적복잡도.제출일충기우K2결구학습산법적석막화수거특정선택방법,해방법통과BIC평분방법득도패협사망락적결구,종중획득류절점적마이가부복개,계이진행특정선택.동시차용불동평분함수적등개성래학정결구학습시소수적양본수,병차급출료양본수적삼고.실험표명,해방법유우결합료양본적분류신식,획득적특정자집시최우적,현저제고료분류정도,강저료계산복잡도.
The redundant features affect the performance of classifier and increase the computing complexity in the classification and extraction of rocky desertification information.A feature selection method is proposed for rock desertification data based on K2 structure learning algorithm,getting Bayesian network structure through Bayesian information criterion(BIC) scoring method,obtaining Markov blanket of class node,and conducting feature selection.It determines the number of samples required for structure learning borrowing the equivalence of different score functions, and gives the number of samples for reference. Experiments show that the feature subset obtained by this method is optimal,and significantly improves the classification accuracy and reduces computational complexity by combining the classification information of samples.