物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2011年
3期
530-538
,共9页
张庆峰%郑朝蕾%何祖威%王迎
張慶峰%鄭朝蕾%何祖威%王迎
장경봉%정조뢰%하조위%왕영
反应机理%甲苯参比燃料%着火延迟%激波管%均质压燃着火
反應機理%甲苯參比燃料%著火延遲%激波管%均質壓燃著火
반응궤리%갑분삼비연료%착화연지%격파관%균질압연착화
Reaction mechanism%Toluene reference fuel%Ignition delay%Shock tube%Homogeneous charge compression ignition
提出了一个适用于均质压燃着火(HCCl)燃烧过程的甲苯参比燃料简化机理模型,包含70种组分和196个反应.低温简化机理选用Tanaka等人构建的基础燃料氧化机理中的部分反应,加入本文构建的甲苯简化子机理中.高温简化机理主要利用到Patel等人的研究成果,同时加入关键反应[H+O2+M=O+OH+M].简化机理分别对替代混合物中的单组分、双组分、三组分物质进行了着火延迟期的预测计算,预测结果与实验结果较为吻合.与HCCI发动机实验的验证表明,对于各工况下甲苯参比燃料的缸内计算,该机理的预测能力是令人满意的.由此可知.本文提出的TRF简化机理在HCCI燃烧方面的预测性能是可靠的.HCCI发动机工况下最大放热率时刻的敏感性分析表明.随着压力的升高,C6H5与O2的反应变得更加重要;甲醛是非常重要的中间产物,是不应当被忽略的.
提齣瞭一箇適用于均質壓燃著火(HCCl)燃燒過程的甲苯參比燃料簡化機理模型,包含70種組分和196箇反應.低溫簡化機理選用Tanaka等人構建的基礎燃料氧化機理中的部分反應,加入本文構建的甲苯簡化子機理中.高溫簡化機理主要利用到Patel等人的研究成果,同時加入關鍵反應[H+O2+M=O+OH+M].簡化機理分彆對替代混閤物中的單組分、雙組分、三組分物質進行瞭著火延遲期的預測計算,預測結果與實驗結果較為吻閤.與HCCI髮動機實驗的驗證錶明,對于各工況下甲苯參比燃料的缸內計算,該機理的預測能力是令人滿意的.由此可知.本文提齣的TRF簡化機理在HCCI燃燒方麵的預測性能是可靠的.HCCI髮動機工況下最大放熱率時刻的敏感性分析錶明.隨著壓力的升高,C6H5與O2的反應變得更加重要;甲醛是非常重要的中間產物,是不應噹被忽略的.
제출료일개괄용우균질압연착화(HCCl)연소과정적갑분삼비연료간화궤리모형,포함70충조분화196개반응.저온간화궤리선용Tanaka등인구건적기출연료양화궤리중적부분반응,가입본문구건적갑분간화자궤리중.고온간화궤리주요이용도Patel등인적연구성과,동시가입관건반응[H+O2+M=O+OH+M].간화궤리분별대체대혼합물중적단조분、쌍조분、삼조분물질진행료착화연지기적예측계산,예측결과여실험결과교위문합.여HCCI발동궤실험적험증표명,대우각공황하갑분삼비연료적항내계산,해궤리적예측능력시령인만의적.유차가지.본문제출적TRF간화궤리재HCCI연소방면적예측성능시가고적.HCCI발동궤공황하최대방열솔시각적민감성분석표명.수착압력적승고,C6H5여O2적반응변득경가중요;갑철시비상중요적중간산물,시불응당피홀략적.
We developed a reduced kinetic model for toluene reference fuel (TRF) including 70 species and 196 reactions for homogeneous charge compression ignition (HCCI) combustion. The low temperature reaction scheme for the TRF was based on the existing low-temperature reaction mechanism developed by Tanaka for primary reference fuel (PRF) oxidation. We added skeletal reactions for PRF oxidation to a reduced toluene sub-mechanism. The high-temperature reaction mechanism was mainly from the previous work of Patel and an important TRF reaction [H+O2+M=O+OH+M] was added. Validation of the ignition delay time was performed for single-component, two-component and three-component fuels and the results were satisfactory for HCCI engine conditions. A comparison of various experimental data available in the literature, including shock tube tests and HCCI engine experiments, shows that the present TRF mechanism performs well. A sensitivity analysis at the moment of maximum heat production shows that the reaction of phenol radicals (C6H5) with O2 is more sensitive as the pressure increases. Formaldehyde (HCHO) is a very important intermediate species and should not be neglected.