电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2009年
14期
122-128
,共7页
人工智能%强化学习%马尔可夫决策过程%随机最优控制%电力系统
人工智能%彊化學習%馬爾可伕決策過程%隨機最優控製%電力繫統
인공지능%강화학습%마이가부결책과정%수궤최우공제%전력계통
artificial intelligence%reinforcement learning%Markov Decision process%stochastic optimal control%power system
强化学习理论是人工智能领域中机器学习方法的一个重要分支,也是马尔可夫决策过程的一类重要方法.所谓强化学习就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大.强化学习理论及其应用研究近年来日益受到国际机器学习和智能控制学术界的重视.系统地介绍了强化学习的基本思想和算法,综述了目前强化学习在安全稳定控制、自动发电控制、电压无功控制及电力市场等方面应用研究的主要成果与方法,并探讨了该课题在电力系统运行控制中的巨大潜力,以及与经典控制、神经网络、模糊理论和多Agent系统等智能控制技术的相互结合问题,最后对强化学习在电力科学领域的应用前景作出了展望.
彊化學習理論是人工智能領域中機器學習方法的一箇重要分支,也是馬爾可伕決策過程的一類重要方法.所謂彊化學習就是智能繫統從環境到行為映射的學習,以使獎勵信號(彊化信號)函數值最大.彊化學習理論及其應用研究近年來日益受到國際機器學習和智能控製學術界的重視.繫統地介紹瞭彊化學習的基本思想和算法,綜述瞭目前彊化學習在安全穩定控製、自動髮電控製、電壓無功控製及電力市場等方麵應用研究的主要成果與方法,併探討瞭該課題在電力繫統運行控製中的巨大潛力,以及與經典控製、神經網絡、模糊理論和多Agent繫統等智能控製技術的相互結閤問題,最後對彊化學習在電力科學領域的應用前景作齣瞭展望.
강화학습이론시인공지능영역중궤기학습방법적일개중요분지,야시마이가부결책과정적일류중요방법.소위강화학습취시지능계통종배경도행위영사적학습,이사장려신호(강화신호)함수치최대.강화학습이론급기응용연구근년래일익수도국제궤기학습화지능공제학술계적중시.계통지개소료강화학습적기본사상화산법,종술료목전강화학습재안전은정공제、자동발전공제、전압무공공제급전력시장등방면응용연구적주요성과여방법,병탐토료해과제재전력계통운행공제중적거대잠력,이급여경전공제、신경망락、모호이론화다Agent계통등지능공제기술적상호결합문제,최후대강화학습재전력과학영역적응용전경작출료전망.
Reinforcement Learning (RL) theory is an important branch of the machine learning in the field of artificial intelligence, which is also the general method to deal with Markov Decision Process problems. RL takes learning as trial and error process so as to maximize the reward value function by choosing an action depending on the state. In recent years, RL and its application are received increasing attention of international academia. In order to propel the further study on the aspect of RL in power systems, this paper introduces the basic idea and algorithms systematically, the main achievements of RL are surveyed in security and stability control, automatic generation control, voltage and reactive power control and electricity market respectively. Furthermore, the paper discusses the application potentials of RL in power system operation and control, and the combination of RL with classical control, ANN, fuzzy theory and multi-agent system. Meanwhile, the prospect of RL theory in power system is brought forward.