数学年刊A辑
數學年刊A輯
수학년간A집
CHINESE ANNALS OF MATHEMATICS,SERIES A
2009年
6期
765-770
,共6页
Hamilton序列%极值Beltrami系数%无限小Teichmuller度量
Hamilton序列%極值Beltrami繫數%無限小Teichmuller度量
Hamilton서렬%겁치Beltrami계수%무한소Teichmuller도량
Hamilton sequence%Extremal Beltrami coefficient%Infinitesimal Teichmiiller metric
考虑了Strebel点与Hamilton序列之间的关系.这个问题是Gardiner F.P.最早研究的(见[Approximation of infinite-dimensional Tcichmiiller spaces,Trans.Amer.Math.Soc.,1984,282(1):367-383]).在无限小Teichmiiller空间中,证明了范金华在[On infinitesimal Teichmüller space,Bull.Austral Math.Soc.,2008,78:293-300]中得到的使{φ_n}成为Hamilton序列的充分条件不是必要的.
攷慮瞭Strebel點與Hamilton序列之間的關繫.這箇問題是Gardiner F.P.最早研究的(見[Approximation of infinite-dimensional Tcichmiiller spaces,Trans.Amer.Math.Soc.,1984,282(1):367-383]).在無限小Teichmiiller空間中,證明瞭範金華在[On infinitesimal Teichmüller space,Bull.Austral Math.Soc.,2008,78:293-300]中得到的使{φ_n}成為Hamilton序列的充分條件不是必要的.
고필료Strebel점여Hamilton서렬지간적관계.저개문제시Gardiner F.P.최조연구적(견[Approximation of infinite-dimensional Tcichmiiller spaces,Trans.Amer.Math.Soc.,1984,282(1):367-383]).재무한소Teichmiiller공간중,증명료범금화재[On infinitesimal Teichmüller space,Bull.Austral Math.Soc.,2008,78:293-300]중득도적사{φ_n}성위Hamilton서렬적충분조건불시필요적.
In this paper, the relationship between Hamilton sequence and Strebel points is discussed, which was first studied by F. P. Gardiner in [Approximation of infinite-dimensional Teichmiiller spaces, Trans. Amer. Math. Soc., 1984, 282(1):367-383]. The authors prove that in the case of infinitesimal Teichmüller space, the sufficient condition for {φ_n} to be a Hamilton sequence obtained by Fan in [On infinitesimal Teichmüller space, Bull. Austral.Math. Soc., 2008, 78:293-300]is not necessary.