东南大学学报(英文版)
東南大學學報(英文版)
동남대학학보(영문판)
JOURNAL OF SOUTHEAST UNIVERSITY
2007年
2期
151-155
,共5页
信道模型%路径损耗%时延特性%穿戴式躯域传感器网络
信道模型%路徑損耗%時延特性%穿戴式軀域傳感器網絡
신도모형%로경손모%시연특성%천대식구역전감기망락
channel model%path loss%time delay characteristics%wearable body sensor network
应用基于时域有限差分法(FDTD)的XFDTD仿真工具分析研究2.4/5.2/5.7 GHz穿戴式躯域传感器网络(W-BsN)的体表路径损耗和时延特性.仿真环境为置于自由空间中的简化三维人体模型.分析结果表明,当工作频率较高时,路径损耗相对较小;当发送点和接收点都置于主躯干时,路径损耗与最小等效体表距离遵循对数拟合模型,并且2.4,5.2,5.7 GHz下的衰减指数分别为4.7,4.1和4.0.另一方面,各接收点的首径延迟约小于2 ns,而最大时延扩展为10 ns.为避免多径延迟引起的码间干扰,建议W-BSN的传输速率应小于108符号/s.
應用基于時域有限差分法(FDTD)的XFDTD倣真工具分析研究2.4/5.2/5.7 GHz穿戴式軀域傳感器網絡(W-BsN)的體錶路徑損耗和時延特性.倣真環境為置于自由空間中的簡化三維人體模型.分析結果錶明,噹工作頻率較高時,路徑損耗相對較小;噹髮送點和接收點都置于主軀榦時,路徑損耗與最小等效體錶距離遵循對數擬閤模型,併且2.4,5.2,5.7 GHz下的衰減指數分彆為4.7,4.1和4.0.另一方麵,各接收點的首徑延遲約小于2 ns,而最大時延擴展為10 ns.為避免多徑延遲引起的碼間榦擾,建議W-BSN的傳輸速率應小于108符號/s.
응용기우시역유한차분법(FDTD)적XFDTD방진공구분석연구2.4/5.2/5.7 GHz천대식구역전감기망락(W-BsN)적체표로경손모화시연특성.방진배경위치우자유공간중적간화삼유인체모형.분석결과표명,당공작빈솔교고시,로경손모상대교소;당발송점화접수점도치우주구간시,로경손모여최소등효체표거리준순대수의합모형,병차2.4,5.2,5.7 GHz하적쇠감지수분별위4.7,4.1화4.0.령일방면,각접수점적수경연지약소우2 ns,이최대시연확전위10 ns.위피면다경연지인기적마간간우,건의W-BSN적전수속솔응소우108부호/s.
The on-body path loss and time delay of radio propagation in 2.4/5.2/5.7 GHz wearable body sensor networks (W-BSN) are studied using Remcom XFDTD, a simulation tool based on the finite-difference timedomain method. The simulation is performed in the environment of free space with a simplified threedimensional human body model. Results show that the path loss at a higher radio frequency is significantly smaller. Given that the transmitter and the receiver are located on the body trunk, the path loss relevant to the proposed minimum equivalent surface distance follows a log-fitting parametric model, and the path loss exponents are 4.7, 4.1 and 4.0 at frequencies of 2.4, 5.2, 5.7 GHz, respectively. On the other hand, the firstarrival delays are less than 2 ns at all receivers, and the maximum time delay spread is about 10 ns. As suggested by the maximum time delay spread, transmission rates of W-BSN must be less than 108 symbol/s to avoid intersymbol interference from multiple-path delay.