西北工业大学学报
西北工業大學學報
서북공업대학학보
JOURNAL OF NORTHWESTERN POLYTECHNICAL UNIVERSITY
2001年
1期
140-143
,共4页
微射流作动器%集总参数法%参数分析
微射流作動器%集總參數法%參數分析
미사류작동기%집총삼수법%삼수분석
使用集总参数法,建立了描述微射流作动器工作过程的数学模型。计算结果显示, 对于给定的驱动模式,作动器各工作参数基本上随驱动频率同步发展。另外存在着最佳的驱 动电压频率和开口大小,使得作动器的能量转换效率最高。
使用集總參數法,建立瞭描述微射流作動器工作過程的數學模型。計算結果顯示, 對于給定的驅動模式,作動器各工作參數基本上隨驅動頻率同步髮展。另外存在著最佳的驅 動電壓頻率和開口大小,使得作動器的能量轉換效率最高。
사용집총삼수법,건립료묘술미사류작동기공작과정적수학모형。계산결과현시, 대우급정적구동모식,작동기각공작삼수기본상수구동빈솔동보발전。령외존재착최가적구 동전압빈솔화개구대소,사득작동기적능량전환효솔최고。
We used lumped parameter method to establish the mathematical model of the working process of microjet acturator. The governing equations are eqs.(1a) through (1e); they involve many parameters: (1) displacement and velocity of metallicm embrane of actuator, (2) density and pressure of airflow, (3) air velocity at ex it. Eqs.(1a) through (1e) are strongly coupled ordinary differential equations. Calculated results for a numerical example in section 2 show that, after a short transient period of only about five cycles, the variations of various parameters in the microjet actuator approach values that become synchronized with the driving force of the actuator.
For the same numerical example, we calculated the variations of airvelocity at exit with vibration frequency (Fig.3a) and diameter of the circular exit (Fig.3b ) respectively. Figs.3 (a) and 3(b), in our opinion, show that optimal combination of vibration frequency and exit diameter exists to give maximum energy transfer efficiency, which, we deem, can be represented by air velocity at exit.